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ABSTRACT

The purpose of this paper is to introduce a new spline approxi-
mation scheme for retarded functional differential equations. The
special feature of this approximation scheme is that it preserves
the product space structure of retarded systems and approximates the
adjoint semigroup in a strong sense. These facts guarantee the con-
vergence of the solution operators to the differential Riccati equa-
tion in a strong sense. Numerical findings indicate a significant
improvement in the convergence behaviour over both the averaging and
the previous spline approximation scheme.

Furthermore, controllability and observability criteria are
given for the approximating systems, which are shown to be stable
respectively stabilizable for sufficiently large N provided that
the underlying retarded system has the same property.
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SIGNIFICANCE AND EXPLANATION

For a large number of problems in engineering and biology

appropriate mathematical models involve functional differential

equations (FDE) which in turn can be reformulated as ordinary

differential equations (ODE) in infinite dimensional state spaces.

This paper is concerned with the approximation of these equations

by a sequence of finite dimensional ODEs. A particular emphasis

is placed on the approximate solution of the linear quadratic

optimal control problem. The approximation scheme is based upon

a projection of the underlying function space onto a spline sub-

space. The special feature of this scheme is that it preserves

to product space structure of the FDE and approximates the optimal

feedback law on the strong operator topology. A number of numerical

examples indicate a significant improvement in the convergence

behaviour over previously developed approximation schemes for FDEs.

I"l

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of this
report. 1
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SPLINE APPROXIMATION FOR RETARDED
i SYSTEMS AND THE RICCATI EQUATION

1,22,
F. Kappel and D. Salamon2 '3

1. Introduction

In this paper we introduce a new spline approximation scheme

for linear time invariant retarded functional differential

equations (RFDEs) and establish a number of convergence results

and structural properties for this scheme. In particular we show

that the approximate feedback law and the solution of the operator

Riccati equation, associated with the linear quadratic control

problem for this class of systems, converge in the uniform operator

topology.

The first step of the general approach is to transform the RFDE

i(t) 2 Lx t + Bo u(t), y(t) 2 C0 x(t) (1.1)

into an abstract Cauchy problem of the form

d (t) Ax(t) , 5u(t), y(t) Cx(t) (1.2)

in the Hilbert space X = Mn x L 2[-h,0 Rn , h > 0, where A is the
infinitesimal generator of the strongly continuous semigroup S(t)

which is associated with the uncontrolled delay equation. For

systems of the form (1.2) there exists a general theory of the

linear quadratic control problem of minimizing the cost functional

1Institute for Mathematics, University of Graz, Elisabethstrasse
16, A-8010 Graz (Austria).
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T
J(u) I [iy(t)1 2 + lu(t)1 2]dt (1.3)

0

(see e.g. [91, [151,1201). The optimal control can be characterized
as a feedback law which is determined by an operator satisfying
the differential Riccati equation (in the case T (-) respectively

the algebraic Riccati equation (in the case T = -). These operator
Riccati equations involve both the original generator A and its

adjoint operator A*. Therefore, in order to approximate the feedback

law and the Riccati operator in the strong operator topology, we

have to approximate both semigroups S(t) and S*(t) in the strong

operator topology (see 1211).

For the approximation of the semigroups we use a Galerkin
type scheme, i.e. we define finite dimensional subspaces XN of X
and operators AN on XN which generate semigroups SN(t) on XN. The
classical idea is to choose XN c dom A and define AN = pNApN where

is the orthogonal projection of X onto X . Under appropriatepN XN.

consistency and stability hypotheses the convergence of S N(t) to
S(t) in the strong operator topology follows.

These ideas have been used by Banks and Kappel [71 for the
development of a spline approximation scheme for RFDEs and have
then been applied to problems of optimal control and parameter
identification e.g. in (31, [6), 181, (261. In particular, Kunisch
[261 has estabilished weak convergence results for the solution
operators of the differential Riccati equations. Numerical findings
in [8) indicate that these operators indeed do not converge strongly
for the spline scheme developed in [7). Furthermore, it can

actually be shown that the adjoint semigroups SN(t)* cannot converge
strongly in that scheme. The main reason for this is that the
subspace XN in [7] has been chosen to be contained in the domain
of A which is different from the domain of A*.

In order to overcome this unequal treatment of S(t) and S*(t),

our first idea was to introduce two spline subspaces XN c dom A and
NY' c dom A* and to make use of the non orthogonal projections of X

onto XN along (yN). Unfortunately, we found out after lots of

1~



calculations that these projection operators did not converge

strongly to the identity. The second (successful) idea was then

to enlarge the subspace XN such that it is neither contained in

dom A nor in dom A*, but contains sufficiently many elements of

both domains. Of course, in this situation the approximating

operators can no longer be defined by AN = pNApN but have to be

defined directly instead (for details see Section 4.3). As a
result we are able to establish the desired convergence of the

solution operators of the Riccati equation in the uniform operator

topology for the finite time horizon problem. Despite the fact that

in the case of the infinite time horizon problem our scheme always

did converge numerically, we were not able to prove this convergence

following the approach presented in [21]. The reason is that we

do not have the uniform (with respect to N) exponential stability

of the approximating semigroups for our scheme (compare Section 5.4).

In this respect the spline approximation scheme differs from the

averaging approximation scheme in (4] for which the uniform

exponential stability property has been established in 137].

In two preliminary sections we collect some basic facts from

the state space and control theory of retarded systems (Section 2)

and give a short survey on the theory of the linear quadratic

optimal control problem for abstract systems in Hilbert space and
for RFDEs (Section 3). In Section 4.1 we present a general

approximation scheme for abstract Cauchy problems in Banach space.
In Section 4.2 we consider the problem of approximating the

feedback law for the finite time horizon problem following the

approach given in Gibson in [21]. The main part of this paper is

Section 4.3 where we develop a special spline scheme and prove

convergence results along the general ideas given in Section 4.1

and 4.2. We also give the explicit formulae for the matrices which

are necessary for the implementation of our scheme. This scheme

has remarkable qualitative properties which are presented in

Section 5. First of all, the product space structure of the under-

lying RFDE (1.1) is preserved and there is a structural operator

playing an important role for the approximating systems (Section 5.1).

-3-.L -;



Secondly, there exist convenient criteria for stability,

controllability, observability, stabilizability and detectability

of the approximating systems (Section 5.2). The main results of

Section 5 are that the stability, stabilizability or detectability

of the delay system imply the same properties for the

approximating systems provided that N is sufficiently large and

that the approximating systems cannot be stable in a uniform

sense with respect to N (Section 5.4).

Finally, in Section 6 we present some of the many numerical

calculations in order to demonstrate the good behaviour of our

scheme and the significant improvement in the convergence property

.over both the averaging approximation scheme [41, [211 and the

spline scheme in 171, [8].

-4-| -



2. State space theory for linear hereditary control systems

In the following we define the type of hereditary control

systems to be considered in this paper (Section 2.1) and collect

some well known facts on the state space description of retarded

functional differential equations (RFDEs) in terms of semigroups

and evolution equations (Section 2.2). Then we outline the basic

duality relations (Section 2.3) and briefly review some of the

existing results on the structural and control properties of

hereditary control systems (Section 2.4).

2.1. Linear hereditary control systems

We consider the linear hereditary control system

;(t) = Lxt + B0u(t), t 0, (2.1;1)

y(t) = C0x(t), (2.1;2)

where x(t) EIRn U(t) E I, y(t) e]Rm and xt is defined by

xt(s) = x(t+s) for -h < s < 0, h > 0. Correspondingly B0 and C0

are real matrices of appropriate dimensions and L is a bounded

linear functional C(-h,O Rn) .Rn given by

0
L4 I [dn(T)1(,r)

-h [ 0
Aj(-hj) +-f A0l(-r)#(T)d', E C(-h,0"R )9

where 0 0  ... hp = h and A E Rn n, 0,...,p, as well02 n xn

as A01(.) e L (-h,0"Rnxn). Clearly, the function ,:m P n of

bounded variation is of the form

() = -A 0() ( j()

j=1 J--p-h

0
A 2 A0 (c)dc, t emR,

S-5- -,
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where X, denotes the characteristic function of the interval I.2 n ) hc
A solution of (2.1;1) is a function x(.) E L oc(-h,-;MR) which

is absolutely continuous with L2-derivative on every compact

interval [0,T], T 1 0, and satisfies (2.1;1) for almost all t > 0.
It is well known that (2.1;1) admits a unique solution2tI
x(t) = x(t;*,u) for every input u(.) E L oc(0,m-;R ) and every

initial condition

x( = , X(T) (T), -h < T < 0, (2.2)

where # (0,1) e M2 =] x L2 (-h,O nR) Moreover, x(-;f,u)

depends continuously on f and u on compact intervals, i.e. for
any T > 0 there exists a K > 0 such that

sup Ix(t;f,u)l < K(11 11 + lul 2(o,Tl )

where 11#11 = (1,°12 + 11122)1/2 for f e M2(see e.g. [131,1191).
L

The fundamental solution of (2.1;1) will be denoted by X(t) and
is the nxn matrix valued solution of (2.1;1) which corresponds to
u S 0 and X(0) = I, X(T) = 0 for -h < T < 0. The Laplace-transform

of X(.) is given by A- I(A), where

A(L) = Al - L(e XI)
Sl-- A NehJ 0 AT

A . - f A01 (T)e dT, A Ei =0 J -h

is the characteristic matrix of (2.1;1). Again it is well known

that the forced motion of (2.1;1) (in case = 0) can be written

as

t
x(t;O,u) I X(t-T)B 0u (i)d', t > 0. (2.3)

0

-6- .



2.2. Semigroups and state space description

In the theory of RFDEs two state space concepts are of importance

which are actually dual to each other. Existence, uniqueness and

continuous dependence results for solutions of RFDEs have motivated

the "classical" definition of the state of system (2.1) to be the

pair

W~t) =(x~t),x t ) e M 2 (24

which completely describes the past history of the solution at

time t > 0. The evolution of this state is governed by the

variation-of-constants formula

t
w(t) = S(t)¢ + f S(t-s)Bu(s)ds, t > 0, (2.5)

0

which is the infinite dimensional version of (2.3). The input
1 2operator B: 0£ -M. is given by

Bu = (B0u,O) 6 M
2  u U RL

and the semigroup S(.) corresponds to the free motion of the
sysem•i~eS~t: 2  2

system, i.e. S(t): -* M , t > 0, is defined by

S(t)¢ = (x(t;¢,0)x t (¢ 0)), t > 0, * e M2 .

The infinitesimal generator of S(-) is given by

dom A {e M21i, e W1 , 2  0 = #1(0)),

(2.6)A* := (L* 1,1)

where W1 ,2 denotes the Sobolev space W1 '2 (-h,09Rn). The function

w(t) as defined in (2.5) is a mild solution of the abstract

system

i -7-



k(t) = Aw(t) + Bu(t), (z)

y(t) = Cw(t), w(O) = 4.

The output operator C: M2 -1 m is defined by C# C 0, * e M2.

Analogously we introduce the semigroup ST(.) on M2 which

corresponds to the transposed system

LTxT
(t) t + CoY(t), (2.7;1)

u(t) B T x(t). (2.7;2)

The infinitesimal generator of ST(-) is denoted by AT* Corresponding

to system (2.7) we have the abstract sytem

=(t) = ATW(t) + C*y(t)

u(t) = B*w(t).

Note, that ST(.) is not the adjoint semigroup to S(.). The duality

relation between systems (2.1) and (2.7) involves another state

concept which is due to Miller [31].

2.3. The dual state concept

Another state concept for system (2.1) - again in the state

space M2 - can be obtained by viewing the L -component of the

state introduced in the previous section as an additional

forcing term instead as an initial function. To this end we rewrite

system (2.1) in the following way

0
i(t) = [dn(,()]x(t+) + B0 U(t) + f (-t),

-t (2.8;1)

x(O) = fO,

y(t) C 0 x(t), (2.8;2)

iI -8-



where the pair f = fO1) e M 2 is given by

To Zo

f(a) = f [dv(r)]*1(r-a) (2.9)

-h

01
- A.*1 (-h.-a) + S A0 1 (t)* (,-o)d,

j:1 -h

(we define * (T) = 0 for T [-h,0]). Now the initial state of

system (2.8) is given by f E M2 . Correspondingly the state at
time t > 0 is the pair

t 2z(t) = (x(t),x ) e M2 , (2.10)

where x E L2 (-h,0n) is defined by

xt(a) [dn()lx(t+ -o) + f1 (C-t)
a-t (2.11)

Ajxt(-hj-o) + f A0 1 (T)x(t+T-O)dT + fl (-t).j=1 a-t

Here for any solution x(t) of (2.8;1) we define xt (,) = 0 if

> 0 or T < -t. The state z(t) determines the future behavior

of the solution from t > 0 on, i.e. x(t+s) = 0 fcr s > 0 if and

only if z(t) = 0.

The evolution of z(t) is governed by the following variation-

of-constants formula

t
z(t) = sI(t)f + f Sj(t-s)Bu(s)ds, t > 0, (2.12)

0

which means that z(t) is a mild solution of the system

i(t) = A~z(t) + Bu(t), z(O) =f,

y(t) = Cz(t)

-9-



([101,1141,[18]). Note that (EZ) is precisely the adjoint !-ystem

to (ET) which corresponds to the transposed system (2.7) ir terms

of the original state concept. The operator A* is the infinitesimalT
generator of the semigroup S*(-) and can be described explicltly

in the following way (see e.g. [181):

Lemma 2.1. The operator A, is given byp-1

doma A = {f E M2if1 + Ajfx EW  f (-h) Apf
j:1.X[-h,-h. IW21 f1 -h

0

[A.f] ° = f'(O) + Aof

1A() A~~ 0 
-d 10-

[A f (T) Ao01 (,)fO _ lT) + A Ajfox [-h,-h](T)J.
j=1 i1

The relation between the two state concepts can be described by

the socalled structural operator

F: M
2 - M2

2
which maps every initial state # E M of system (E) to the

corresponding initial state

F# = f e M
2

of system (24) which is given by (2.9). This operator has been

introduced by Bernier and Manitius 1101. The adjoint operator F*

is of the same form as F but with the transposed matrices. This

means that F* plays the same role for the description of the

transposed system (2.7) as F does for the original system (2.1).

The operator F has the following important properties [101,

(181:

-10-



Theorem 2.2.
Mi FS(t) = SV(tF, t >, 0.
(ii) If * e dam A, then FO e dom A* and

A*FP = FAO.

(iii) FB = B and CF = C.

2.4. Stability, stabilizability and controllability

System (2.1) is said to be atabte if every solution x(t) of

the free system (i.e. u(t) - 0) tends to zero as t goes to
infinity. Equivalently, the semigroup S(-) is exponentially stable,

i.e.

1

0 lim1 ln iS(t)II = sup {ReNI E c(A)} < 0

(see for instance [23]). The spectrum of A is given by a(A)

{A e fldet A(X) = 0). Note, that c(A*) = o(A). Clearly, the

stability of system (2.1) is equivalent to the stability of the
transposed systam (2.7) and to the stability of system (2.8).

The control system (2.1) is said to be AtabitizabLe if there

exists a control law

u(t) = K(x(t),xt)

0
= K0x(t) + J K1 ( )x(t+r)dr,

-h

where K0 EJR 1xn , KI(.) e L 2(-h,0. 1xn ), such that the closed loop

system (2.1), (2.13) is stable. We have the following important

characterization (see [331,[35]).

~-11 -
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Theorem 2.3. The following statements are equivalent:

(i) System (2.1) is stabilizable.

(ii) There exists a K e L(M2 ;RI) such that the operator A+ BK

generates an exponentially stable C0 -semigroup.

(iii) There exists a K* E L(M2 1Rt ) such that the operator A+BK

generates an exponentially stable semigroup.

(iv) rank IA(A),B 0 1 = n for all A E 0 with ReA > 0.

The dual result is the following (see e.g. 11o] or 1351,136]):

Theorem 2.4. The following statements are equivalent:

(i) There exists a H e LRm ,M 2 ) such that the operator A+ HC

generates an exponentially stable semigroup.

(ii) There exists a HI E LOnmM 2 ) such that the operator A* + H*CT T
generates an exponentially stable semigroup.

(iii) rank ) = n for all A e with ReA > 0.

System(2.1) is called detectabte if the statements of the previous

theorem are satisfied. A detailed discussion of the perturbed

semigroups and the duality relations between feedback stabilization

and dynamic observation in the product space framework can be

found in 135).

System (2.1) is called appAoximateLg coRUwtoabte if the

reachable subspace

t2
R =(f S(t-s)Bu(s)ds I t > 0, u(.) e L (OtgR

in dense in M2 -; it is called 4tictty obe4uvabLe if for all

solutions of (2.1) y(t) = 0, t ' 0, implies x(t) = 0, t > -h.

These two properties have been characterized by Manitius [271,[28]

as follows.

-12-



Theorem 2.5. Let A(T) 0. Then system (2.1) is approximately

controllable if and only if the following conditions are

satisfied:

rank tA(X),B0I1 n for all A e :
rank (Ap B I = n.*

System (2.1) is strictly observable if and only if the following

condition. are s atisfied:

rank (J1 n for all A e ,

rank A P n.

-13-



3. The linear quadratic control problem

3.1. Control systems in Hilbert spaces

Let us first deal with general linear control systems in

Hilbert spaces X, U and V described by

i(t) Ax(t) + Bu(t), x(O) = X0'

(3.1)
y(t) Cx(t).

We assume that B E L(U,X), C E L(X,V) and that A is the

infinitesimal generator of a Co-semigroup S(t) on X. System (3.1)

will be unterstood in the sense of mild solutions, i.e. the

trajectories of the system are given by

t
X(t) = S(t)x 0 + f S(t-s)Bu(s)ds, t > 0, (3.2)

0
for any x e X and any input u() e 2  (01-0).

Let R: U * U and G: X - X be selfadjoint linear operators

satisfying

Sx,Gx> > 0 for all x e X

and

,u,Ru> > ellull2 for all u e U

with some c > 0. In this section we look at the control problem

of minimizing the cost functional

J(u) <x(T),Gx(T)> +
(3.3)

T2
+ f [JCx(t)112 + <u(t),Ru(t)>1dt,

0

-14-
I



where x(t) is given by (3.2) and T > 0 is a fixed final time.

The following result has been proved in [15]:

Theorem 3.1. For any x E X there exists a unique control

function U(') E L 2(0,T;U) which minimizes the cost functional

(3.3) under the contraint (3.2). The optimal control is of

feedback form and is given by

u(t) =-R-18*P(t)F(t), t > 0 (3.4)

where i(t) is the mild solution of the Cauchy problem

= (A- 5R-B*P(t))x, x(0) = x0 , and t - P(t) e L(X) is the unique

operator valued function on [0,T] with the following properties:

(i) P(t) is positive semidefinite for every t e [0,T].

(ii) The function t - P(t)x is continuous on 10,T] for every x e X.

(iii) The function t < cx,P(t)y is continously differentiable on

(0,T] for all x,y E dom A and satisfies the Riccati

differential equation

d
dT 'y,P(t)x> + <Ay,P(t)x• + <P(t)y,Ax>

- <y,P(t)6R-1B*P(t)x> + <CyCx) = 0, (3.5;1)

<y,P(T)x> = <y,Gx>. (3.5;2)

Moreover, the optimal cost is given by

J( ) = cxoP(O)Xo>.

It is easy to see (cf. [201) that equations (3.5) can be

written in the form

P(t)x $*(T-t)GS(T-t)x
(3.6)

T -1+ f $*(T-t)[C*C- P(T)SR' S*P('t)]S(T-t)xdr,

t

-15- -



0 t < T, x X K, or respectively,

P(t)x = S*(T-t)G(T,t)x

T
+ f S*(--t)C*C*(t,t)xd,
t

0 < t < T, X e X, where O(T,t) is the evolution operator given by

T -
f(Tt)X = S(T-t)X - f S(T-o)BR- 8*P(o)(o,t)xda,

t
(3.8)

0 < t < x< T, x e X.

Let us now consider the problem of minimizing the cost

functional

J(u) f [IICx(t)U] 2 + <u(t),Ru(t)>]dt (3.9)
0

where again x(t) is given by (3.2). For this situation the

following result has been proved (see [15],1161,[41]; further

references can be found in the survey paper [ 9 )):

Theorem 3.2. a) The following statements are equivalent:
(i) For any x0 e X there exists an input u(.) e L 2(0,-;U) such

that the corresponding cost J(u) given by (3.9) and (3.2)

is finite.

(ii) There exists a positive semidefinite operator P e L(X)

satisfying the algebraic Riccati operator equation

<Ay, Px> + <Py,Ax> + <CyCx>

- <Py, R -18*Px> = 0

for all x, Y e dom A.

b) If the statements under a) are valid, then there exists a

unique optimal control (t) which is given by the feedback law

-16-
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(t) -16'I*PX(t), t > 0, (.1

where 7(t) is the mild solution of the Cauchy problem

= (A- BR- 8*P)X, x(0) z x0 , and P is the minimal solution

of (3.10). Moreover, the optimal cost is given by

J(U) = CX0,Px0'j' .

a) Suppose that the statements under a) are satisf'ied and let P

be the minimal positive semidefinite solution of (3.10). Moreover,

let PT(t), 0 < t ' T, be the unique positive semidefinite solution

of (3.5;1) with PT(T) = 0. Then P is the strong limit of PT(0) as

T goes to infinity.

d) Suppose that there exists some H e L(Y,X) such that the operator
A +HC generates an exponentially stable semigroup. Then there exists

at most one positive semidefinite solution of (3.10). Moreover,

if such a solution exist-, then the closed loop semigroup generated

by A- BR- B*P is exponentially stable.

Finally note that any solution P of the algebraic Riccati equation
is a stationary solution of the Riccati differential equation. Hence

it follows from (3.6), (3.7) and (3.8) with G = P that the algebraic

Riccati equation (3.10) is equivalent to

Px 2 S*(t)PS(t)x

t
+ j S*(r)[C*C - PBR B*P]S(T)xdr,

0

t 0, X G X, or, respectively, to

t
Pz= S*(t)PSP(t) + f S*()C*CSP ()xdT, (3.12)

0

t' 0, x e X, where S(-) is the closed loop semigroup generated

by A - OR'IB*P.
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3.2. Applications to hereditary systems

Let us first apply Theorem 3.1 to the systems (r) and (ZE)

which are associated to the system (2.1) in terms of the two
state concepts introduced in Section 2. The cost functional for

system (2.1) is given by

J(u) = x(T;*,u)TG0x(T;ou)
(3.13)

T t
+ f [ C0x(t;,,u) 12 + u(t)TRu(t)]dt,

where REIR XXis positive definite and G E nxn is positivesemidefinite.
2 deiedb 0 2The operator G: M + M is defined by Go = (0 ,0), * e M . Then

the cost functional for systems (z) and (1*) is given by (3.3)

(with G = G, C = C and R = R, of course). According to Theorem 3.1

there exist two unique, positive semidefinite, strongly continuous

families T(.) and P(.) of operators in L(M2 ) which satisfy the

following Riccati differential equations:

dt <cn(t)+> + <A*,n(t)*> + <n(t)*,A*>

-114
- <I(t)*,BR IB*H(t)f> + <C,C#> = 0,

n(T) = G,

*,* e dom A, 0 < t < T, and, respectively,

ddd <g,P(t)f> + <A~g,P(t)f> + <P(t)g,Af>
(3.15)

- <P(t)g,BP- B*P(t)f> 
+ <Cg,Cf> = 0,

P(T) = ,

f,g e dom A*, 0 < t < T.

The operators H(t) and P(t) have the following properties:

-18-
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Proposition 3.3. a) n(t) F*P(t)F, 0 < t < T.

b) range P(t) c dom AT for every t < T-h. If G 0 0, then range

P(t) c dom AT for every t E 10,T]. Moreover, in this case the

function t * P(t)f is continuously differentiable on [0,T]

for every f e dom A* and satisfies
T

d
J P(t)f + ATP(t)f + P(t)A~f -dtt f (3 16)

- P(t)BR'IB*P(t)f + C*Cf = 0,

P(T) = 0.

c) range R(t) c dom A* for every t < T-h. If G 0, then

range f(t) c dom A* for every t e (0,T]. Moreover, in this case

the function t - R(t) for every * e dom A is continuously

differentiable on [0,T] and satisfies

d
d R(t)o + A*H(t)# - R(t)A# - (3.17)

- R(t)BR-'B*n(t)f + C'C* = 0,

1(T) = 0.

Proof. a) has been shown in (171. However, it also follows

immediately from Theorem 2.2 that n(t) = F*P(t)F defines a

positive semidefinite solution of (3.14) if P(t) is a positive

semidefinite solution of (3.15).

b) follows from (3.7) and (3.8) with P(t) = P(t), S(t) = S*(t),
8 = B, C = C and R= R. One has to observe the following facts:

(i) range ST(t) c dom AT for all t , h.Tl
t 2

(ii) j ST(s)C*u(s)ds e dom AT for all u E L (0,TMR ).
0

(iii) If z(s,t) E M2 is continuous on {(s,t) I 0 < t < s < T)
and continuously differentiable in the second variable,

then the function

-19-



T
w(t) J S T(s-t)z(s,t)ds, 0 < t < T,

t

is continuously differentiable and satisfies

d -T dT w(t) ATw(t) + S T(t-s) A z(s,t)ds -z(t,t).
t

c) follows from a), b) and Theorem 2.2 o

Let us now look at the structure of the operators H(t) and P(t).

Due to the product space structure of the state space M 2 we can

write

R 00(t) 11o01(t)| Po00(t) Po01(t)

n~t) = I ,P(t)

10( t )  1() (t )  P l( t )

where H 0 0 (t), P0 0 (t) are selfadjoint operators Rn .- n which can

be represented by symmetric matrices and H 11 (t), P1 1 (t) are

selfadjoint operators L2 - L2 . The operators n 1 0 (t), P10 (t) can

be represented by matrix-valued functions Hl1 0(t,.), 1 0 (t,.) E
L2 (-h,0 Rnxn). The adjoint operators R0(t) = n 0(t) and P0(t)

2 n 0 00
P*0 (t) from L -,n.R are given by

0 T 0 T

it0 1 (t)* f= Rli(tr)l(O)d. P01 Wt).

-h -h

2
*L.

We are mainly interested in the matrices n 00(t) and n1 0 (t,T) which

determine the optimal feedback law

U(t)= -R'B 0(o00 (t)x(t) + i hl0(t,T)x(t+T)d J (3.18)
-h

for system (2.1). Recall that B* maps * e M2 to BO . By

Proposition 3.3, a) we have the following relations between n(t)

and P(t):
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.oot) PO o(t), (3.19)
aT

U 0(t.,a) ==ATPlo(t,-hJa) + -hI A 01 (, ) P l O0 (t ' ' - a )d T "

j0 j 10 h

Hence the control law (3.18) can be written in the form

0(t) - BT [P tx(t) + J T (t,-h. o)A x(t+o)do

0 00 1 j1 l

00j=1 hi (3.20)
+ J f P1 o(t, -)Ao 1 (T)x(t+a)dad.
-h

Finally, note that P1 o(t,.) 6 Wl,2(-h,OJ Rnxn) and Poo(t) = P1 o(t,O)

for t < T-h for all t e [0,T] provided that G 0 (Proposition 3.3,b)

For the rest of this section we assume that system (2.1) is

stabilizable and detectable, so that systems (S) and (E*) satisfy

the assumptions of Theorem 3.2. Hence there exist positive semi-

definite operators n, P e L(M 2 ) satisfying the algebraic Riccati

equations

A*f# + IA - nBR IB*H4 + C*C# = 0, (3.21)

e a dom A, and, respectively,

ATPf + PAjf - PBR-1B*Pf + C*Cf 0, (3.22)

f e dom A. The equations can be written in this form since every

solution P of (3.10) maps dom A into dom A*. The relation between

IN and P is as follows:

Proposition 3.4. a) a F*PF.

b) range Pcdom AT.

c) range fcdom A*.
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Proof. Statement a) follows again from the fact that for any

solution P of (3.22) the operator n = F*PF defines a solution of

(3.21) (see also [401 ). Moreover, b) follows from (3.12)

(for t > h) and c) follows from a), b) and Theorem 2.2 0

Again the operators H and P can be written in block form
SnO0 nO1 POO P01

P PJ

niIni 10 11

wh1 an Pa P2  lwhere 1 n0 and P 1 P map L. intoRn By Proposition 3.4

we have P1 0 (*) e W '2(-h,ORnxn ) and

OG 00 0 0  P 1 0 (0), (3.23)

1O(a) = ATP 1o(-ha-o) + AOT)Po (-)d.
10 j= 10)j -h

Hence the optimal feedback law is of the form

u(t) - R- B*H(x(t),xt) - RB*PF(x(t),xt)

S- R-1BT[oX(t) + 0 (T)x(t+T)dT] (3.24)

B 0-P1 Oxt + f P10 (-h _co)A ix(t+a)da J

J~l -hj
0 00

0 T _BrP()ho(T)x(t+a)dadT] '

+ f f 10 01
-h -

Finally note that the closed loop system (2.1), (3.24) is stable

(Theorem 3.2).

-22-

t



4. Approximation

4.1. A general scheme

In this section we present a general approximation scheme for

linear abstract Cauchy problems restricting ourselves to a

situation which is of sufficient generality for our purposes.

Let X be a real Banach space with norm 1 F.11 • Purthermore

let A be the infinitesimal generator of the C 0-semigroup

S(t), t > 0, on X. It is well known (see for instance [30],

p. 278, or [321, p. 100) that x(t) = S(t)x 0 for any x e dom A

is the unique strong solution of the abstract Cauchy problem

i(t) = Ax(t), t > 0,

(4.1)
X(0) = xO.

By a strong solution x(t) = x(t;x0 ) of (4.1) we mean a continuously

differentiable function x: [0,-) -1 X such that x(t) e dom A for

t > 0 and (4.1) is satisfied. There exist constants M > I and

w e3R such that

IIS(t)II <Me'a, t >0.

Our goal is to approximate the trajectories S(t)x0, x0 e X,

by sequences of solutions to Cauchy problems in finite dimensional

spaces. It is a standard idea to choose a sequence {XN I of finite

dimensional subspaces of X with corresponding projections

pN: X-X N , N = 1,2,...,

and to define (in an appropriate way) a sequence (A N } of linear

operators

AN: XN . XN, N = 1,2,...

-23-
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With AN and x0 E X we associate the Cauchy problem

xA(t) ANXN(t), t > 0

XN (0) N(4.2)

on XN. We extend the definition of A to all of X by ANx ANpNX

and define the C 0-semigroup SN(t), t _> 0, on X by

N AN t A Nt N NS (t)x0 = e X0 = e pN 0 + X0 - pX0, t _> 0, X0 E X.

The following hypotheses will be used in order to guarantee
N N

the desired convergence S (t)p X0 - S(t)Xo:

(Hi) lir pNx = x for all x E X.
N-1

(H2) There exist constants M > 1 and Z e R such that

IISN(t)XII _ Meot ixl

for all t > 0, x e XN and N = 1,2,...

(H3) There exists a dense subset D c dom A which is invariant

with respect to S(t), t _> 0, such that

(i) lim ANpNx = Ax for all x E D
N-+m

and

(ii) for any x e D there exists a function m(.,x) e L oc(0,-R)

such that

IIANpN(t)xjIj m(t;x) a.e. on [0,-)

for all N.

Hypothesis (H2) is equivalent to

-24-
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(H2*) For any N there exists a norm 11.I1N on XN such that

(i) for some constant M > I

--X. 11XI1N 11X1, x E X N, N = 1,2,...,

and

(ii) for some constant e e R all operators AN_ -I are

dissipative on (XN,iI-.L), i.e. (cf. [321, Thin. 4.2 )

(AN~N
II (N -  ) I

N  !>('j- )11 xi6

for a1l x e XN and all u >.

If (H2) is satisfied we define

1IX1IN = sup ,lSN (t)XI1e;t X E "  , 192,...
t>o

It is easy to see that "i"N is a norm on XN with

N
11X11.Zl I 1N _1 M11x 11, x E X , N 1 ,2,...

Moreover for the operator norm corresponding to 11""1N we have

II stIIN e ; t 2 0, N = 1,2,...

Then (H2*,ii) is an immediate consequence (cf.[32], Thin. 4.3).

Conversely, if (H2*) is valid then by (H2*,ii) we get

IISN(t)ll6 <1 • t  _ N = 1,29..

Using (H2*,i) we immediately get (H2).
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We note some consequences of (HI) - (H3) which will be useful

for the proof or our convergence result:

a) The projections p are uniformly bounded, i.e. there exists

a constant y > 0 such that

lip II I ,. N = 1,2,...

b) If x: 1O,TJ - X, T > 0, is continuous then

lir p Nx(t) = x(t)

uniformly for t e [O,T1.

Assertion a) follows from the uniform boundedness principle.

If b) were not true, we could deduce the existence of a monotone

sequence N * - and a sequence {t k } in [O,T] with tk - t 0E [0,T]
such that ll Nkx(t k) - (tk)Il _: a > 0 for all k. Using continuity
of x we immediately would get a contradiction to p NX(t) (to).

Theorem 4.1. Let (Hi) - (H3) be satisfied for the sequences X 
N

pN, AN, N = 1,2,9.... Then for all x 0 e X

lim eANtpN Xo = S(t)X 0  (4.3)
N.+m

uniformly for t in bounded intervals.

Proof. We first choose x0 e D and put

aN(t) = N (t) - N(t)9 t > 0, N - 1,2...

where x(t) = (t; 0 ) and xN (t) = XN(t;pNo0) are the solutions of

(4.1) and (4.2), respectively. Since the derivative of A N(t)

-26-
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exists for all t 0 0, the left-hand derivative L IIN(t) II
exists for all t • 0 and is given by ((301, p. 228)

dt IIAN(t)I 11 T-(A N t)'N(t))' t > 0,

where T_(x,y) = lim (lx + Y IN-I IN ).
'r b0-N N

Using (4.1), (4.2) and the estimates _((,yl+y 2 ) _ _

+ T +(x,y 2 ) and IT+(x,y)l .1 I - MiIyll we get

dIAN(t)II = T_(AN(t),RNAx(t) - ANXN(t))dt N -

= T.(AN(t),pNAx(t) - AN pN(t) + ANaN(t))

N N N NNMyllAx(t)-.A p X(t)j + _(AN(t),ANAN(t)),

t > 0.

By (H2*,ii) we have T (aN(t),ANAN(t)) < ;Ila (t)II for all N
(see for instance (30], p. 244). Therefore for - My

dIIA(t)IIN_ N II (t)IIN +YIIAx(t) - ANpNX(t)I , t > 0,

which implies

Ila N(t)l <1 Il N (t) 11N

- 5 jA x ( T ) - ANp x() i e (t-)dT, t > O.

0
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for all N. Since D is invariant with respect to S(t) we have

x(T) = S()x 0 e D for T> 0. By (H3) we can use Lebesgue's

dominated convergence theorem in order to get

lim A N(t) = 0
N-w

uniformly for t in bounded intervals provided x0 E D. The estimate

IIx(t) - XN(t) X(t) - PNx(t)l1 + IaN (t)II together with b) from

above proves

A t N
lim e p x0 = S(t)x 0
N+-1

uniformly for t in bounded intervals for all x0 E D.

For arbitrary x E X we choose a sequence {xn in D with xn xC0"

Then the estimate

Xl(t;X0 )  X N(t;p X 0)I X (t;X 0 )  - X(t;X n ) i

f IIX(t;Xn) - xN(t;pNXn)I + IIXN(t;pN n ) - N(t;pN o)X1

(Me Wt + Mebt )II xo - XNI + IIx(t;xn) - xN(tp ;N N ) I

proves (4.3) for all x0 E X o

The methods in the proof of the previous theorem are well known

in connection with numerical approximation of partial differential

equations (see for instance the proof of the Lax-Richtmyer

equivalence theorem in [22]). For delay equations this approach

appears for the first time in .131, [61 and has later on been used

in 125]. We consider the more general Benach space situation,

because the proof is almost the same as in the Hilbert space case.

We equally well could have used the Trotter Kato theorem (32). We

choose the classical Lax-Richtmyer idea, because with minor

modifications the above proof also applies to the case of time

varying coefficients.
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Next we consider the nonhomogeneous problem

z(t) - Ax(t) + Su(t), t > s, (4.5;1)

x(s) = x 0 e X, (4.5;2)

where u e Lo2 (S,-'R.t) and B is a linear operator]R * X.
boc

The unique mild solution x(t) = x(t;s,x 0 ,u) ofC(4.5) is given

by

t
X(t) S(t-s) 0 + f S(t-T)BU(T)dr, t _> s. (4.6)

In addition to the approximating sequence XN, pN AN N = 1,2,...,

NN
introduced above let us assume that 8N , N =1,2,..., is a

sequence of corresponding input operators ] R X . Then we

consider the approximating systems

N(t) z ANXN(t) + BNu(t), t > s, (4.7;1)

XN(s) = pNN x0 X X, (47;2)

on XN with the unique solution xN(t) = xN(t;s,pNxo,u) given by

t N
XN(t) sN(t's)pNX0 + . sN(t-)Bu(t)d-r, t > s, (4.8)

where S N(t): X * X is defined as above.

The following theorem and its proof are a slight modification

of a result already established in 1 41.

Theorem 4.2. Assume that SN(.), N = 1,2,.., and S(-) are

C0-semigroups on X such that for constants M _ 1, w e3RNI
isN(t)II MeWt, t ), 0, N = 1,2,..., (4.9)

and for all x0 G X
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sir N(t)pN0 S(t)x 0  (4.10)N N

uniformly on bounded t-intervals. Furthermore assume that

lir 6N & S for all R .  (4.11)

Then for all x e X and T > 0

lir x N (t;s,pNxou) x(t;SXoU)

uniformly for 0 < s _ t < T and for u E L2 (s, T RI ) with

il[L (s, T Xz -I

Prof. y d w hae N N
Proof. By (4.9), (4.10) and (4.11) we have SNW9& S(t)
for all & E IR9 uniformly for t e [0,TI (note, that (4.10) implies

pN - I strongly) which shows

IIS (t)B - S(t)8II 0

uniformly for t E [0,T] . By (4.9) and an application of the
dominated convergence theorem we get

TIIsN(t)sN - S(t)BlIdt - 0.

Then the result follows from

IIx(t;sXoou) - xN (t;s,pNXu)II

N N tN N< cIS(t-s)x0 -S (t-s)p x0  + fBjS(t--)8-S (t-')5 llu(-)IdT

<IIS(t-s)x 0 - sN(t-s)p x011 +

(f I(t)5-S (t)BNI 2 dt) hu 11/2 L (s T
0
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4.2. Approximation of the feedback law

Throughout this section we assume that X is a Hilbert space.

We restrict ourselves to the finite time control problem of

minimizing the cost functional

Js(u) <x(T),Gx(T)> (4.12)
T 2 T

+ I [I rx(t)t + u(t) Ru(t)]dt
s

associated with the Cauchy problem (4.5). We assume that the

operators G: X ,X , R *.IR C: X - Fm are defined as in

Section 3.1. As we have seen in that section (with obvious

modifications for the case when the initial time s is not necessarily

zero), the unique solution of this problem is given by the feedback

law

s(t) - -R-18*P(t)O(t,s)x0 , s < t < T, (4.13)

where P(t): X - X is the unique positive semidefinite solution of

the Riccati differential equation (3.5) and *(t,s) is given by

(3.8).

Correspondingly, we consider the sequence of control problems

of minimizing

JNs(u ) = <xN(T),GxN(T)>

T (4.14)
+ 11K [l (t)ll1 + u(t)TRu(t)ldt

where x(t) xN(t;s,pNX0 ,u) is the unique solution of (4.7).

The optimal control is given by the feedback law

"N(t) = - R'I(BN)*pN(t)tN(t,s)pNxo(.)

= -R 1 (BN)*P N(t) N(ts)X 0 , s < t < T,
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where the strongly continuous, positive semidefinite operator

PN(t): X - X and the strongly continuous evolution operator

0N(t,s): X -+ X are defined by the equations

PN(t)x sN(T-t)*pNGpN 0 N (T,t)x
(4.16)

T N N NN
+ f sN(-t)*pNc*cp 0 (T,t)x d T , t < T,

t

and

N sN
4N(t,s)x = (t-s)x

(4.17)

t sN (t-)B-(B)*P(T)O(T,s)xdT, t > S,
8

for x e X. It follows immediately from (4.16) and the fact that
PN(t) is selfadjoint that

PN(t) = pNPN(t)pN t < T. (4.18)

This in turn implies, by (4.17), that

p N N(t's) = DN(ts)p , s < t < T. (4.19)

Note that these two facts justify the second equation in (4.15).

Moreover, the optimal cost of (4.14), (4.7) is given by

JN -N 0 PN(s) x 0 > . (4.20)
a Su8  0' 0

We remark that PN(t), regarded as an operator on XN, satisfies

the following finite dimensional Riccati differential equation
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d PN(t) + (AN)*PN(t) + PN(t)AN

- pN(t)BNRI(BN)*pN(t) + pNC*CRN 0, t c T, (4.21)

PN(T) = pNGpN

Obviously, the most interesting question is how the original

system (4.5) behaves when the optimal feedback control (4.13)

is replaced by the approximate control law

uN(t) = -R- 1 (B N)*PN(t)* (ts)x0  (4.22)

where N (t,s) denotes the corresponding closed loop evolution

operator on X and is defined by

N (ts)X z S(t-s)x
(4.23)

f S(t-T)BR'(BN)*p (t)sN(ts)xdT
a

for x 6 X and s < t < T. All the desired convergence results are

contained in the next theorem which is a straight forward

consequence of Iheorems6.1 - 6.3 in [21]. For the convenience of

the reader we present the main ideas of the proof.

Theorem 4.3. Let us assume that

(i) there exist constants M > I, w e R such that

usN(t)I_ Me" , t 0, N = 1,2,...,

(ii) for every x e X

lim sN(t)pNx -- S(t)z, lim sN(t)p Nx S(t)*X
N-o N.-

uniformly on [0,T] and
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N(ii) im 5N 9 B for every C EI

Then, for every x E X
j(N) lN j() N sS)

(a) lim Js ( s ) =( s imS)
N- N -

(b) lim (t) lim u (t) = (t),
N0m S S S

(C) lim 0 N(t,s)x lim ;N (t,S) o t ts) O

(d) lim P(s)x 0 = P(s) t
NN.-

and the limits are uniform on the domain 0 c s _ t < T. If

G: X - Xis a finite dimensional operator, then P (s) converges

to P(s) in the uniform operator topology, uniformly on the interval

[O,TI.

Proof. Let us introduce the operators F (t): L 2(s,TR Z) - X,
d2  R 2 s2 zGs: X C L(s,TR ), Rs: L2 (sT;R ) (s,T R ) by

definine

t
Fs(t)u f S(t-T)Bu(T)dT,

s
T

Gsx = Fs (T)*GS(T-s)x + Fs(T)*C*CS(T-s)xdr, (4.24)
S

T
Rsu = Fs(T)*GF sT)u + f Fs(T)*C*CF ()udr + Ru

aS

for u E L (s,T'R I) and X E X. Of course, Ru is defined by (Ru)(t) =

Ru(t), s < t < T. Then it is easy to see that the Frechet derivative

of J with respect to u is given by J'Cu) s2Ru + 2G x . Since the

optimal control is satisfies J'(U.) 0, this implies

S-R s Gx 0  (4.25)

Analogously, we get
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-N (RN -IGN PNX (RN 1 NU = ) Gs3x 0  (4.26)

where RN, GN , FN are defined as above with S(t), 5, C, G

replaced by S (t), ,N Cp , p -P , respectively. Combining these

formulae with (3.8), (4.13) and (4.17), (4.15), we get

S(t's)x -(t-s)x 0 - Fs(t)RsGsx (4.27)

N(t's)x : (t-s)x - FN(t)(RN) 1 GNx (4.28)
'0 0 s s sO0

for every s E [0,T) and every t e [s,T].

We-have shown in Theorem 4.2 that FN(t) converges to Fs(t) in

the uniform operator topology, uniformly for 0 < s < t < T. This

implies that for every x E X

im GNx = G x (4.29)
N- S S

uniformly on [0,T] and moreover IRs - Rs11 - 0, also uniformly

on (0,T]. Choosing c > 0 such that CTR& cjI& for & E , we

obtain

ilRN u l l _,juil u e L 2(sTR ), N 1,2,...

and hence

Jim'I(RN-Rl;l = 0 (4.30)S S

uniformly on. O,T).

It follows immediately from (4.27 - 4.30) that N(t,s) converges

strongly to 0(t,s). By (4.16) and (3.7), this implies the strong

convergence of the Riccati operators pN(s) to P(s). Now the

convergence result on N (t,s) follows from the inequality
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11 0(t,s)x 0 * (t's)x1j
tN N
I t' 1S(t--)BR-1iI' [(5N)*pN()- *P( )] (Ts)xJIdT
S
t -1 N -

+ f IS(t--t)5-R(BN)*P (-r)jji (Ts)X - *(T,s) X1 dT
0

and Gronwall's lemma. Thus we have established the statements

(c) and (d). Statement (b) follows from (c) and (d), since the- -N '"N
control functions Us, UN, us are given by (4.13), (4.15), (4.22)

respectively. Statement (a) is an immediate consequence of (b) and
(d), since JN(uS) = <x 0 pN(s)x > and Js( u) <X0,P(s)x0 > If

G: X - X is a finite dimensional operator, then the convergence

of pN(s) in the uniform operator topology can be established by

analogous considerations as those in the proof of Theorem 4.2,

again by the use of the formulae (4.16) and (3.7) a

-36-



4.3. A special spline scheme

In this section we develope a special scheme which satisfies

all assumptions of Sections 4.1 and 4.2. For N 1,2,... we choose

the meshpoints

where

r k =hk - h k-l' k

The sequence X N ,N = 1,2,..., of subspaces of M2 is defined by

X N EM 2 j, e]N N +
0l 0 1 ekj jli *0' kJ

The "basis elements" eN ;N are given by

;N =(1,0), eN (,eN

where

r(- Nkl)I for TE It Nl't N)

L0 elsewhere,

NN N-- )I for TE I N t N~
Kk k Oj(tkip+ kJ1

ekj. r k k,j+2 +1

0 elsewhere,

J 21,..,N1,and

-37-



N )I for TE N N

N = " k,N-1 tkNk,N-1

k 0 elsewhere.

Here I denotes the nxn identity matrix. The following diagramN
illustrates the definition of the basis elements 

ek .

ekOj
e N  e N e
kN ekj ek0

N. /i

h -N tN tN 0
-hk tkN kj hk-1 kO

Figure I

It is obvious that

dim XN n((N+1)p+l).

We see that XN is the subspace of all elements (f ,0 ) M2 such

that *0 is arbitrary inJ n and * is a piecewise linear] n-valued

function which is continuous except possibly at the delay points

-hk where jumps of arbitrary size can occur. By definition we can

always assume that #* is right-hand continuous on (-h,O). Thus

XN is neither a subspace of dom A nor one of dom A*. Since XN

contains all (#0 1 ) where # E Rn and *I is a spline of first
order corresponding to the mesh {tk) it is clear that the

N 2 k
orthogonal projections pN: M I X satisfy hypothesis (HI) of

Section 4.1.
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For notational purposes we introduce the orthogonal projection
pN L2 (-h,0-Rn) span( eN,...,epN) , i.e. for * (M01

we have pN = (0 0 pN ). Furthermore we put

= N N£N=(0 e10,...,epN )

and denote by a (N) the "coordinate vector"
N N ,...%a NN ) T ER ni(N+I)p+l of an element * e XN , i.e.

^N NN
S=E C(), * E XN.

An easy calculation shows

CN(pNI) = (QN)-idN(0), 0 C M2 ,  (431)

where

N(f) = <N 0>M2  col(¢0,<e N ,I>. <eN >

and

Q N = diag(I, I N N , . , )

The (N+I)x(N+I) matrix qN is given by

flI :10_0

1 2

21
00~3

For elements in XN the inner product has the representation

€N2 - aN( )TQNON(0), e X N  (4-32)
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We have seen that X is not contained in the domains of the

operators A and A*. However, these operators can be formally

extended to all of XN in the following way.
~0

[A#] 0  A + A A1(-h + 5 A0 1 (a)* (t)dt,
+k=1 -h

[At](): +'T) + 0(k)(¢0 - lim 61())

p-i 1
+ 6k(T)(# (-hk) - lrm 0()),
ki T+-hk

[A**] 0 =lim I (T) + AT 0 ,

T+O
1T ()0 d+1

[*](T) = A 01 ( - 3 T )

p-1 T 0 11
+ 1 dk(T)(AkV - 1(-h ) + lim *(-t))

+ 6p(,r)(A T O  1(-h)),pc -

for 0, E e XN where 6 k denotes the Dirac delta impulse at -hk,

k 0,1,...,p. We will introduce the operators AN and (A N)* by

projecting these formal extensions formally back into the

subspace XN. Since the jumps of the function components of elements

of XN occur precisely at T = -hk, we have two possible

interpretations of 6k as a functional on XN , namely the evaluation

of either the right hand or the left hand limit at -hk.

Correspondingly we introduce the following two types of approximate

delta impulses which can be obtained by a formal projection of
6k in one of these two ways. We define

aN : NN, k-z 1 ,p,

N ,N N .

where
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NN N NQ Yk,+ 2010,e 10 (h k ) , *.. .,e p N ( hk ) )

and

Qk,"_ = col(0,1im el, eN (-r))-

kT+hk rT-hk

First observations are contained in

Lemma 4.4. a) For any x e In. and 4 e M2

" (p1 #')(-hk), k = .

<6 -_X, >M2 xT lira (p1 4)(T), k 0,...,p-1.k~p T -h k

b) For N, as operators Jn . M2 we have

k~rkN,+ - rk •2 k = 1,...,p,

I N (N )1/2 9k=0..pl
-- rk I

Proof. a) Using (4.31 ),(4.32) and the definition of 6N we get

<N <N N N#k,+,M2 E < +yx,p *,M2

N TNN N
(ykx) Qa(p )

= xT col(0,eN0(-h),..,eN(h))aN(pN.)
=xT(pN# ) (-h )

The proof for 6k is analogous. N N
b) Using (4.32) and the definitions of 8k+ we get for any

x ,n

, -41- '
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la6 , +I2) Q NYNX

- (0,...,oxT)-(qN aI)-col(O,...,O,x)

6N

where we have used A (q . The estimate for 6  is

analogous a

01 N ~ + €

AN* (Ao0  + I Ak 1 (a-h + 1 A(T)O (T)dT, p1L- ) )

0 k=1 k hk) -h A01(r1 Nde*)
N 06 11 (_h)

+ 6  o _ uim +()) + (l kh)lim

TtO kl Tt-hk

N N N
It is clear that A is a linear operator X -0 X . The adjoint

operators are given in

Lemma 4.6. The adjoint operator (AN)* is given by

(A N)* = (lim 1 (T) + A 0  pN(AT 0  " 0 d )
TO- 0 ln 01 W ,1

+ k+ kA +6 A (r) I (-h
k= T1 1 k-h k

N - T 0 1(_)
+ a p,+ (A p (-h))

for = (0,1 e XN

Proof. By definition of the adjoint operator we get

-42-



<(A )**9.>M2 = <*A 4>M2

Ide L2 +<0960N (0 lim 4 (T))>M2

<(*1 N(d,1)>L < , -~ *10

+I ,6k l(-hk) - lrn ())>M2
kL T-hk

for any* = (If *I) q (10 ,1) in XN. By part a) of Lemma 4.4

we see

<*,60 -(#0 - lim* (T))>M2 = (lim (r)]T (€ lim n (-))
0 r+O Tt+O Tt+O

and

< k,8 -*1 (-hk) - lim *I(T))>M2

= ([n ir 1(r)lT(* (-h ) - lrna €(c)),
SI-hk k -t-hkk

k = 1,...,p-1. Furthermore,

<I N d1 .I) 1 d+# I -hk-1 1 )T (- d,
' dI )d L2 H > L2 = e(k=1 -hk d

- nim -T I (-hk )T 1(-hk )
kl T+-hk-1 k i

SNd- 1L2

and

0T 0  1 T 0 1 N T 0fJ A0 1 (.)0(r)d < A01 * ,1L2 p <P1(A 0 1 * ¢>L2 .

-h

Putting things together we get
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<(AN )**,f>M2 [- r lI (T) + AT0 T 0  +
p- T 1 1 0T

+ (AkT* 0 + lim 0 (T) - 0j (-hk) T(-hk)
k -- k r -h k

TO T 1N T 0 d+ 1[AO - ¢p(_hp)] T(-h p) + <P 1 (A 01* _ )1>L2*

The result now follows by an application of part a) of Lemma 4.4 a

We define the sets 6 and D* by

6 ={€ 21 0  €(0), fI E W2,(_h,0 n)

and
21 

T P-1 T 0 p-
1 ,2

D* ={i e M 1j(-h) ApiJT 0,1 + I A 0 X[-h,-h (h

ndkT 0 dk 1 WC,2n
and AT0 d- * I E W1, (-h - h _ n )k = 13...p).

2 - 2'k

Lemma 4.7. a) D(A 2 ) c D and D((A*) 2 ) c D*.

b) There exists a constant Y0 such that for any * e D and N = 1,2,...

N N YO 1.IIA p - A 112  7 11 1I W2,2

c) Assume that A01 E Wl, 2 (-hk,-hk l;R nfor k 1,...,p. Then
there exists a constant 60 such that for any E e D* and N 1,2,...

II (A N)PN - A*OIIM 2

80 T 0 +-- max lAo01  II L2. n
-N k:l,... ,p L (-hk,-hk.1Rn)

+ I, W2, 2 (-hk "hk Rn
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Proof. a) This is clear by (2.6) and Lemma 2.1.
- 01 N N Ib) For - (1 0) e 6 we put N pN1 . Then by (2.6) and

Definition 4.5 we get

hANpN *- A411

AII ( 4 Ak N(-hk) - 1(-hk)]
0 N 1 d

+_A0(-C)[4 N (r) - 1 (W)]drp -%)"

p-1 NN
I {la N 0° lirN (-01 + 1 116 itN (-hk)-lim N (-)I

IIAkil II N- 0 I, + 1IAo11IL2 ,O N-fIIIL 2
kul

N -N N0 - ; I
+k P d 4 -f )1 l ip. 0 1 -

6 N 1/2 N1 +,N1 *P-1 2

+ ()1110(0) - lim #N(.T)) + 1 (10 (-h k ) 4'(-h k)
't+O k=1

+ 1#1 (-h k )  lim # N(.) )

't +-h k

- k . kl 0 (2 ') 'OI2{{ 1 "+ IIL., + IJAo, 1IL2114 a ,~ L2

..! N -1 2 N (;1") -
i, -1 L 2 +UPI - 11 L2

Here we have put -' rain rk . Since # N hk ) -h19

k a 1,...,ps is the image of #11 [.h k,-h k-11 under the orthogonal
projection of L2(-hk -h k-r,,n) onto .

h N

spaneOl [-hk, k1]...,e kN f-hk,-hk 1 J), we get from standard
estimates (cf.(381, Theorem 6.5 and Exercise 6.1)

SNconstI* -" ,e " L{42
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dI N const.
LI -~ 2 N L

and

.N W1 const. ;1pI1 (- P +)II 2 -< N II {Ij 2
1 L NL

1
where the constants are not dependent on f and N. On each

N .N N.
subinterval [-hk,-hk_1  * = X, where x is the cubic type I

interpolating spline for o(T) =f . k (W)dode (see for instance
Ik k

[38], Proof of Theorem 6.6). Note, that interpolating cubic

splines in [381 are type I splines (cf.[1 1). From [24],

Theorem 5.7.1 (with L = - and m = 2) or [121, p. 235 (with

m = r = 2, q = =) we get

II I _ fNil - _ const. (1) 3121, I~w,

where again the constant is not dependent on * and N.

c) As in b) we put vN = pN*I for $ e D". Using Lemma 2.1, Lemma 4.6

and * e D(A*) we get

II(A N)*pN - A**,I

< II(lim *N(T) _+(0),p (Ao + 4P _ W* '

1 0
T+O

1T 0 d I P-1 TO
A 0* + de(* + I Ak* Xc.h,_hk]IM

A~pk=1 k

+ llakl JAkT * + lira * N (T) N (-h k)l
p-I N T+-hN

1 16N+11 IA -* N(-hr-

P.9 p

ipN(AT*Od + *1. T 0 d+ I + d( *1 N

01 U 0(A0 1  3 2 d -(
-4 L

i -46-



Since T 0 d+1 w,2 ek'-k- I;M k 1,...,p, we get from

[381, Exercise 6.1,

1pN (AT 0 0_d+ 01. (AT ¢0 d+ 1)1
1 I(01 d - 01 do

const. max 0 AT ;0 1 *II
N mx 1A01* 11 2 n-- < N k= 1,.O.. p L2 ('hks-h-1 n )

where the constant is not dependent on € and A0 1 .

Similarly as in b) we get

111_*NII const.(1)3/2 max- N W 1m . 2 ( - hk,-hklRn )

and

1 N) const. max2
do (L IIL 2  N kz,... , (-hk,-hk- 1  )

Note, that from the assumption on A0 1 , we get

*'[-hkp-hk-1 ]  E W2 ,2 (-hk-h k1R n), k = 1,...,p. Putting things

together we get the desired estimate o

An immediate consequence of Lemma 4.7 is

Corollary 4.8. a) If we take D = D(A 2 ) then hypothesis (H3,i) is

satisfied for the sequence X N , p N, AN , N = 1,2,... and the

semigroup S().

b) If A01 e W1 2 (-hk-h klRnxn) , k = 1,...,p, and D = D((A*) 2

then hypothesis (H3,i) is satisfied for the sequence X 
N  p N (A ),

N = 1,2,..., and the semigroup S*(.).

The next lemma establishes (H3,ii) for X N  p N AN , S() and

XN, pN, (AN)*, S*(.), respectively.
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Lemma 4.9. a) There exist constants M > 1 and w EI such that

for all € E D(A )

N N wt
IIA p S(t)II _ Me'I*12 , t _ 0, N = 1,2,...,

where 1I12 = j11 11 * JA. 1 + IIA201•
b) Assume A0 W1,2(--h h-khl nxn ), k = 1,...,p. Then there

exist constants M* > 1 and w EIR such that for all e D((A*))

I I(A )*p S*(t) ,I :_ M*e~wt 1*, t > 0, N = 1,2,...,

22
where + JJA* I)+12(*

Proof. a) Since S(.) restricted to D(A 
2 ) is a C0 -semigroup on D(A )

equipped with the norm 1'121 we have

IS(t)¢1 2  Me"tI.12, t > 0, e D(A2 ),

k dk - 1 Id k  1
with some constants M > 1, W ER. From A (L(--j* _- ),

k = 1,2,..., f (0') e D(Ak) we see that de

11* 1Iw22  < 1 12' * e D(A )

2
Therefore, for * E D(A 2 ),

hI(S(t)*) 1 1jW2,2 < Mew I 1
2

,  t _ 0,

and by Lemma 4.7,b)

N N N N
IIA p S(t),hI .1 IIAS(t)I + IIA p S(t)$ - AS(t),IJ

Mewt1 1 Me 1txet IIA, II +~ Me 112

< (M + y0 )eO t112

for t > 0 and N 1,2,....
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b) As in part a) we have

< Mewtl
Is(t, 2 - 12

for t > 0 and 0 e D((A*)
2). From A** (0) + AO T 0A - d+

(AT T 0 d T0d +  0 01
0  - 01 T 0_d i) and thefact(A*) 4,-= (...,A I(*1(0) + AO 0 -0 (A 01 0 ul) ndtefc

that on the intervals 1-hk,-hk-1 ] k = 1,...,p, we have
d+(A IV 0 d+ I. *T 0 *I
d+oAT 0 d- .) = A 01 * it is not difficult to see that

for a constant K • 0 depending on A01 the following estimate

is valid:

max ijKiigcV,* 0i E(A
1 Iiw2 12 n 2

k,,,2 (-hk,_hkl. n) - 2

The rest of the proof is analogous to that for part a) but now

using Lemma 4.7,c) a

Lemma 4.10. Hypothesis (H2) is valid for the sequences AN and

(A ), N 1,2,...

Proof. We introduce an equivalent inner product on M2 by

! 4 T 0 0rg'.0 T *)d, , M2

9 -h

where g is right-hand continuous on [-h,0] and

g(T) z p-k+1 for T E {-hk-h k-), k = 19...,p.

It is clear that the corresponding norm il-1 9 on M2 is equivalent
to the original norm. In fact we have

"141"*"g1 /F11,11, * E M2 .

-49-
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01 N NSinde (4 ,1 g) E XN for any 4 e X we get from Lemma 4.4, a)

that

<6N _X,O> (p-k)xT li 1 0 1
k , 9 r -h k

for k 0,...,p-1, x EJRn and 0 e XN. Using this equation and

Definition 4.5 we get for 4 e

N 1 0T 0cAN010> = [Ao 0 + Ako (-hk) + A A()o ()dT 0
k:1 -h

+p d + N 1 g> 0 1 T 1I de L2 [ P -1 lim 0(T)) lira 0
+ <P ' +0 + 0

+ I (p-k)[ 1(-h k-lim ()]T lim € ().

k=1 -hk +-hk

Obviously pN(flg) 01g and hence

Nd +1 1 de

- (p- k+i) fk-1 C1(T)T (T)dT
k=I -h k

I I (p-k+1)[lim 1 21(,)- 2 10(-hk)121.
2 k=1 1.+- k_ k

Using this and several times the inequality a$ _< 02 +

we get for E e X2
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<A _ ( oA01 + .=IAk 2 + IIA0 1 11 2 )114112
A= 2 k- 1 L

+ 2  14' -h k 2  tO12_ lim # (.))2

2 1 1 2(p- k+ 1)1lim , ( 2 I#1,( 12

2 k=k

+ (p-k+ )[ l(_hk(- )12lim 1 1 12
k=2 rl-hkl

Iq.lIllg+ 2 =11 (-hk)I -141(-hl)I

+ !: (P-k, 1)11 I (-b _ 12- _14(-h )1j21
2 :2

2

with = + 1A0 1 + = IAI 2 + IIlr " This proves (H2*) with2 k Ik'
11 11 for all N (cf. [30], p. 244). Since (H2) and (H2*)

N N Nare equivalent and IS (t)= IIs (t)*JJ the proof is finished a

Lemma 4.10 was the final step to show that Theorem 4.1 applies
to the sequences XN, pN A N N 1,2,..., and XN pN (AN )*
N = 1,2,..., defined in this section. The corresponding input
and output operators are given by BN = pNB = B and CN = CpN  C,
sincepn X (0) C XN for every N eJN. Hence the approximating
systems are described by the ordinary differential equations

0 (t) = AN w N(t) + Bu(t)

Y N(t) = Cw N(t), t > 0, (z N )

w N(0) = p N, * e M2

NI

on the subspaces XN.
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N 2 2
In an analogous way we can define the operators A T M2

by taking the transposed matrices AT...,AT and AT(-) in
an A01()i

Definition 4.5. Obviously all the results of this section can
N

also be applied to the operators AT. Therefore we obtain the

sequence

(t) = (AN)*z (t) + Bu(t),
T

N NN*y t) = Cz (t), t > 0, (ET)
N N 2z (0) = p f, f E M ,

of control systems on X approximating the Cauchy problem (E*).

Now let us assume that R E R is positive definite, G ERnn

is positive semidefinite and G: M2 _ M2 is defined by G# = (G, 0 ,0)

for 0 E M2 (compare Section 3.2). Then we consider the control

problems of minimizing the cost functional

N N N T N 2 TJ (u) = (T),Qz (T)>+fI y(t) +u(t)TRu(t)Jdt (4.33)
0

subject to (EN) and (EN*), respectively. The corresponding Riccati

operators are

I IN(t) p NN (t)p N, P N(t) = p NpN(t)p , 0 < t < T,

and satisfy the following Riccati differential equations on XN

dHN(t) + (A N)*n (t) + N(t)A N

- N(t)BR 'B*N (t) + C*C - 0, 0 < t < T, (4.34)

HN(T) 0 G,

and
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dN -1 NN N

- pN (t)BR- B*pN W + C*C = 0, 0 < t < T, (4.35)

PN(T) = G.

These two Riccati equations have an interesting interconnection.
In Section 5.1 we shall see that - for a large class of systems -

there exists an operator F : X N XN which maps the solutions of

(E N ) onto those of (Z*) or, equivalently, satisfies

(AN)FN FNAN, B = FNB, C =C.

Under these conditions it is easy to see that

n(t) = (F N)*pN (t)F , 0 < t < T. (4.36)

It follows from the results of this section that Theorem 4.3 canNN
be applied to the systems (ZN ) and (I N). More precisely, we have

T
the following theorem which may be considered as the main result

of this paper.

Theorem 4.11. Assume that A01 e W1 ,2(-hk,-hkIRnxn ) for
k a 1,...,p. Then

lim l(t) - HN(t)lI = 0 = limllP(t) - P WtH

uniformly for 0 < t < T.

For implementation of the scheme we have to calculate matrix

representations for the operators A N , (A N)* and B (as an operator

BR I XN) with respect to the basis jN. Formula (4.31) shows how
N 2to calculate the coordinate vector of p for * M
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- NDefine the (N+1)x(N+1)-matrix h by

1 ~0-0

1 0

and the [p(N+1)+1)]nxtp(N+1)+1]n- matrix H N by

NNNN 'N N
N !A1 * A lN + A A2 A 2 N + A 2 A po... A +NA

N
h SI

HN

hI G

0 h N *

where I is the nxn identity matrix and

N 0 NAk f A l(r)ek.( )dT, k 19 ...,sp, 0,..N
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Lemma 4.12. a) The matrix representation (A N  of AN is given by

(A (QN) HN N = 1,2,...

b) The matrix representation [(AN )* of (A N)* is given by

[(AN)*] = (QN)-l(HN)T.

c) The matrix representation of B as an operator * XN is

given by

[BN] = col(B0,0, ... ,90) G [(IRp 1]x

Proof. [AN  is characterized by

aN(AN.) [ANN , XN.

On the other hand we get from (4.31) and N N

N N N-IN N N-1 N Na (AN*) = (QN)'d (AN*) (Q )' E ,A 4>

N -1 N N^N N(Q )'EN,A E N (),

i.e.

IA N 1 (Q N)- IN ,A EN .

We only have to show
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HN cN ANjN,.MN N,A CN

' N .N-N -N .N-N
<eo,A eo> ce, e 0  <.. ceAN N >

0 eO A e10 .pN
<-N AN;N <-N N-N

0,A e0 e10,A e10 >  I <e0,A epN>

<-N "N-N> N N-N - N >

ep e 0  <eNA elO . eNAeN

From Definition 4.5 we get

AN-N 6N

Ae 0 = (A0 ,0) + 
6  -

N^N (AN N N N
A = A kO (ekO) k = 1,, ,

ANN = N N ;N N k
ekN (AkN+A'P (e ))+6 k,-,

AN-N AN  N(N.
eN (pN + A p u))

Observing

<eN PN(;N.> 2 <N ;N,Plmi L e2 is 2
L L

N' i, lir e j() (cf. Lemma 4.4,a))
. -h i

and the definition of ;N and N we get the desired result
0 kj

through straight-forward calculation.

In order to prove the representation for ((A N)* we use

(4.32) and get
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N (¢)TQj (AN)*]a () I ()TQ a((A)*)

Oa* AN <AN40

N (A N)TQNN( M a N()T [AN I TQ (t )

aN T N)TN

i~e. (4) (H M ~~

ie.

[(A )*I = (Q )'1 (HN)T.

Finally we have for any u e 3R

a N(Bu) z a N((B0 u.0)) = (Q N)I d N((B0 u,0))

a (QN)-1 col(B U,0,...,0)

a col(Bo,O , ... O)u
0

which proves the given form of [BN ] I

In order to make use of Theorem 4.3 we have to solve the

Riccati differential equation (4.34) in the subspaces XN . If

in the optimal feedback law (3.18) for the delay system (2.1)

we use N (t) instead of R(t) we get suboptimal controls uN(t)
which by Theorem 4.3,b) converge to the optimal control u(t).

The corresponding solution O(t) e]R p of the RFDE (2.1)
satisfies

dAN -N
(t) aL(x ) + B-u Wt,

where uN (t) is given by the feedback law

uN (t) : -R *11N (t)pN xN(t),xj), t 0.
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Taking matrix representations for the operators involved

equation (4.34) takes the following form:

d-In N(t)) + [(A N)*[n N(t)i + InN(t)[A NI

- inN(t)I[B NR I[B NIT N (t)) + [cNIT[cNl (4.38)

=0, 0 t < T,

inN(T) ] G N].

Here [fN (t)], [CN ] and [GN I denote the matrix representationsof the restrictions of RN (t), C and G to XN considered as

operators XN -XN , respectively. From the definition of C and G
we immediately see

[CN I (C0 ,0,...,0) Rmx[(N+I)p+l]n

and

N 00 0 j[ (N+1)p+1]nx[(N+1)p+l]n

U 0 _ 0

The transformation

rN(t) = QN [nN (T-t)], 0 < t _< T,

puts problem (4.38) into the form

d rN AN TrN N Ndt [Air + r N [A]

- rN [BNIR'(BNITrN + cNIT [C N, (4.39)
0 <t <T,
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rN (0) - 0N 1.

Note, that ((A N)* (QN )I[AN]T Q N. Equation (4-39 ) is the
standard Riccati matrix differential equation (HN(t) N(t) *

implies rN t)T = rN (t)) and can be solved numerically by

standard methods. In many cases a method developed by Casti and

Kailath (see for instance (34], p. 304 ff.) can be used

advantageously. In the case p = I and A0 1 = 0, for instance,

we define

WzAT a+GA 0B R-1BT G CTW0  0 0  0 0 A 0 0 0o o 0

and the 2nx(N+2)n.matrices

N- 0 -

0~01
Note that (FN ) T N __)

t) F2 = r (0). Then

N N t N TN
r(t) [G ]+ f Lj(t) L2 ()dr, (4.40)

0

where

d Li(t) LN(t)([AN ] - [BN]R-i[BN]TFN t))
LN(O) (1.141)

Li 0 1,2.

Note, that this is a system of 4nn2 (N+2) differential equations

compared to the n2(N2) 2differential equations of system (4.39)

(in case p .I and A0 1  0).
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Finally, let us rewrite the approximate control law (4.37) in

terms of the above matrices. For this sake let us introduceN~t N () nN(
the real nxn-matrices HNO (t), H N (t)'...'ITN(t) by

11N(t)

I i

IN (t)1pN~ t  
...

and define

N N Tnl(tT) I N (t) e ) (4.43)
k=1 j:0 kt )4

for -h < T < 0 and 0 _< t < T. Moreover, recall that
N N Q- N N[1 (t)]TQN Q [(t)]. Then the control law (4.37) takes

the following form

N (t) =

-R-1 [B N  [ N (t) (Q ) d N((xN(t),N ))
t

- R 1(BToO...,0)[n (t) d N((iN (t),t N))

R'IBTnN (t)TxN(t) + (4. 44)

N N N T0  N
+kl jI0 k(t) f ek (T)xN(t+T)dT}

0

-B 0  N{ 0 (t)X (t) + j II1(tT)x Ct+T)dT)
-h
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5. Structure and stability

5.1. The structural operator

In Section 2we have seen that the structural operator F: M
2 o N2

plays an important role for the state space description of retarded

systems. In this section we introduce an analogous operator for

the description of the approximating systems (E N) and (ET). The

first step in this direction is

Lemma 5.1. Suppose that r= ... r and A (T) 0. Then XN
2 01

is invariant under the operator F: M- * M2 introduced in Section 2.1.

Moreover for every f E M
2

NN NN

where FN: X * X has the followinE matrix representation with
respect to the basis EN:

1 0  - 0 N0- 0 A.

0 a .......a N j

10ap0- Aj 0-o

Proof. It is easy to see that under the assumptions of the lemma

we have (cf. (2.9))

Fe N a- 0N
0 0

and

,= i-k i i-k+I,N-j' k 1,......
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If A0 1 (T) = 0 and the delays hl,...,h are commensurate

(i.e. h= nip with p > 0 and nonnegativ integers 0 = no <rnI < ... <np),

we always can satisfy the assumptions of Lemma 5.1 by putting

L(*) =I:0 Ai,(-ip) with Anj = A.j and A. 0 for i 4 {n0 ,...,n p.

Of course, this could increase the dimension of the approximating

systems considerably. We have the following important properties

of F 
N

Lemma 5.2. Suppose that r = ... =: r and A 01() - 0. Then

N N N)TN

IF N ]QN  QN IFN ],IF ]HN  (HT [FN ].

Proof. The first relation is a direct consequence of the special
N

block diagonal form of Q and

0- 0 A. 2A.

3 3

2A A .0- 0

j :1,...,p. Analogously we get the second relation by direct

computation using

N(hN (hr 0 0

a .1) = A.) ~a N : I ,p

As a consequence of the previous lemma we obtain the following

finite dimensional analogon to Theorem 2.2:

Corollary 5.3. Suppose that rth r and that Ay(T) E 0.

3 3

1 p 0
Then the following statements hold:

-62-



N N N
(i) FNeA t = e(AT )*tFN, t > O.
(ii) FNAN = (AT)*F N .

N N N4 N N N N adN N
(iii) FNB = B , CNF = C. Here B and C are defined by B = BE,

9 el, and CN CIXN.

Proof. Recall that [AN ] = (QN)-IHN and [(AN)*] (Q ) (HN)T.

Hence Lemma 5.2 shows

IF N][A] I= IFN(QN)IHN = (QN ) I[F N]H

N-I N)T N N N
(Q )(Hf [F I ( (AT)*IF I.

This proves (ii). Statement (i) follows directly from (ii) and

(iii) is trivial a

The above results indicate that - to a certain extent - the

approximating systems (EN ) and (6 *) show the same structural

relation as the original systems (E) and (z*). In particular, if
r . = rp and A10 (T) = 0, then for every solution

NANtwN( t cN~t

wN(t) = e w (0) + J e A N(t)BNu()d , t > 0,
0

of ( N) the function

z Nt) FNwNt)

N Nis the solution of (EN*) with inital value F w (0). The

consequences of statement (ii) in Corollary 5.3 for the RiccatiN N,)rsetvl aebe
equationscorresponding to (zN) and (Z T*) respectively, have been

discussed in Section 4.3 (see (4.36)).
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5.2. Criteria for stability, stabilizability and controllability

In this section we examine some basic structural properties

of the approximating systems (EN) and (N shall need the
facs o th rel (T).W N -1 Nfollowing facts on the real (N+l)x(N+l)-matrix (q ) h

Lemma 5.4. a) Let I.li. be the operator norm which corresponds
2N -T N N+1

to the vector norm ixlN x q x on Then

lie(qN)-lhNt 1 1 1

for N = 1,2,... and t > 0.

b) Let P E o((qN ) -h N) and x = col(xn,0  N ) E , x A 0, such

that either (q N-h N)x = 0 or (pq N (h N) T)x = 0. Then x0 A 0 and

xN A 0.

c) Let E O((qN) lhN) and x = col(1,0,...,0) or x = col(0,...,0,1).

Then x I range(q
N _ h-N ) and x j range(q 

N
- (h ) ).

d) Re P < 0 for every o((q N)- h N).

cN+1
Proof. a) For every x • the following equation holds:

Re(iThNx) (Rex)T h N(Rex)+(Im x)T h N(Imx)
(5.1)

- 11x0I2 - IxNI 2
SN NN+1

Hence (q N)-hN is a dissipative operator on with respect to

the inner product

<Yx>YN = q x, x,y E q

Therefore exp((q N)- h Nt), t > 0, is a contraction semigroup on
N+I supplied with the norm N (see for instance [32]).

b) This follows from
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l a 1 o0- 0 - 2
i 0---N-i-N

and the fact that u = ±3 is not an eigenvalue of (qN) hN N N N

c)x e range(.q - h ) would imply x I ker(uq - (hN ) T ) which is
impossible by b).

d) Assume that u a ((q N)- hN ) and Reu > 0. Then there exists an

X e N , x A 0, such that (uq Nh )x =0. By (5.1) this implies

0 < (Re U)iTqx = Re(xThNx)

1 .xo 12 - IxNI 2.

Hence x0  X N 0 and therefore x = 0 by b.) in contradiction to
X A 0 a

For every u e ¢ which is not in the spectrum of (q N)-hN (in

particular for every P in the closed right half plane) we introduce

the vector

N0 N

as the unique solution of

(Vq N-h )=N() = col(,0,....,0). (5.2)

Moreover, we define
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N r rr
N(A) = N)0N( (A -), (5.3)

J,k k N N N N N

j 1,...,p, k 0,...,N. Then the complex nxn-matrix

NN N N N
aN(A) -AI- [A. N . N(A) + 1 kak(] (5.4)

j: j,N k-0 jk k

plays an analogous role for the approximating systems (E N ) and

(E T*)as the characteristic matrix A(A) does for the original systems

() and (E*). In particular it determines their input-output

behaviour.

Proposition 5.5. a) The left upper nxn block X NtW in the matrixN

eAN]t coincides with that of the matrix e (AT)* t and its Laplace

transform is given by A( -1

b) Let w Nt) = col(wN(t),...) and z Nt) = col(z N(t),...) be the
N N,

unique solutions of (ZN ) and ( T *), respectively, with initial

state zero. Then

N N tN
w0 (t) = z0 (t) f X (t-s)B0u(s)ds, t > 0.

0

c) The transfer matrices of (E N) and (ETN*) coincide and are given

by

GN(A) = C0aN (A)-IB0.

Proof. a) It is sufficient to show that the left upper nxn block
N -1 N -1.

in (AI--[A ) respectively in (AI - [( )*]) is given by
aN(A)-l. Let A E be such that Arj ((ql)-hN) for j = 1,...,p

and choose z col(z0,0,...,0) 6 n+p (N+1)n where z0  .n. Then

(XI-(AN)x z if and only if (AQ N-H N)x = z or equivalently

(AI-Ao)X 0 - Ajxj N + N C5.5;1)j= , k=0 Aj'kXj' kJ = z 0 ' (.51

((A - hN )  I)xj co _,NO,...,O), (5.5;2)
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Here x col(x 0 xl,...xp), where x0 E n, xj = col(xj ... ,XjN) E

EN(N+)n with xjk n and x0,N = x0 . By definition of the

j ,k(X) equations (5.5) are equivalent to

AN M02(5.6;1)AN O)x 0 = o (.6)

Xj,k = Jk(x)xO j, 1,...,p, k O 0,...,N. (5.6;2)

N -1This proves the statement on the matrix (XI- A ) . Furthermore,

(XI-[(A N)*])x = z if and only if .%AQN_ (HN)T)x = z or equivalentlyT T

(XI- A 0)x 0 - X 1,0 = z0, (5.7;1)

i r.N NT)

(X-N_ -(h N ) )I)x.

(5.7;2)

col(A N _xos...A xO(A +A N)x +x
J.0 " ,N-0 NN 0N Tj+,0

where x p+I 0  : 0. Since the first row of the matrix (Pq N (h N)T)-

is given by (a (U),...,aN(0)) we see that (5.7) is equivalent
to (5.7;2) and

A N(X)x0  z0, (5.8;1)

~NrNN A N Nri N(X2rl)...Nj..)x, A i ~ a N(X N)+ j A i'k a' (A-N-)]x0 aN( N  .. N N
J 0  J~ N N

(5.8;2)j = 1..p

This finishes the proof of a).

Statements b) and c) follow directly from a) 0

The following characterization of stabilizability and

detectability for the approximating systems ( N ) and (ET ) is

precisely the analogon to Theorems 2.3 and 2.4.
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NN

Theorem 5.6. a) The matrix (A N I (or equivalently ((AN)h])is stable
N T

if and only if det A (A) A 0 for every X E 4 with Re A> 0.N N
b) The system (EN) (or equivalently (ET *)) is stabilizable if and

only if

rank (A (X),B 01 = n

for every A E with Re A> 0.
NN

c) The system (E ) (or equivalently (ENT)) is detectable if and
only if

rank nAN(A)}

for every A e 4 with Re X> 0.

Proof. It is well known from finite dimensional linear system

theory that (zN) is detectable if and only if ker(XI-[AN ])n ker[CN]:

(0) or equivalently

ker(AQ N -H ) n ker [C N 0

for every A E 4 with Re )> 0. But X 4 a((qN)- hN) for Re A> 0
N~ N_ N

(Lemma 5.4,d)) and x = col(x 0 ,x1 ,...,x p ) E ker(AQ -H ) is

equivalent to AN(M)x0 :0 and (5.6;2). Therefore detectability of
(EN) is equivalent to

N
ker A (X) n ker C0 = {0)

for every A E I with Re A > 0. Analogously it follows from (5.8)

that this condition is also equivalent to detectability of (NT

Statement b) follows from c) by duality and statement a) is

a special case of c) (put C0 = 0) a
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In the special situation considered in Section 5.1 we can also

characterize controllability and observability of systems (E ) and

(E TN) (compare Theorem 2.5):

Theorem 5.7. Suppose that r1  r (N) "  r and that A 01  0.

a) Let A e be such that X r o((q ) h N). Then A e c(AN) if and

only if det aN(M) Z 0. if "I e o((qN)-IhN), then A. o(AN) if and
0. orever N Nonly if det A = 0. Moreovera((AT)) o(A ).

b) System (E ) is controllable if and only if

N r N -1 N)

rank[A (X),B 01 - n for all A e *-a((q )h

and

rank[A pB 0 1 = n.

c) System (z ) is observable if and only if

rank CN) : n for all A e $ *a((q) h )
[Co

and

rank A = n.

d) System (EN*) is controllable if and only ifT

N r N -INrank[A (A),B 01 = n for all Axe$% ((N)q )h N )

and

rank Ap = n.

e) System (EN*) is observable if and only ifT

rank A (A) n for all A E.¢ a( N)lh)C 0O

and
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rank C p n.

Proof. Let A E 0%cO((rqN ) or equivalently XE 4 a((q N )  ).

N N N NThen (5.6) and (5.8) imply that both, ker(AI-A n ker C {0}
N Nand ker(AlI- (A)*) n ker C {0}, are equivalent to

ker AN (X) n ker C0  {0), i.e. to rank [A 0 n.

r N-IN NNow let X E a((Eq ) h ). Since A01 = 0 we have Ajk = 0
j : 1,...p, k = 0,...,N. Assume first that rank A n and let

n+p(N+1)n satisfy ( QN-HN)x:O,[cN]x:0. Then x satisfies

(5.5) with z 0 = 0. Lemma 5.4,c) implies x0 =x : 0, j : 1,...,p-1.

By (5.5;1) we have Apxp,N = 0, i.e. also xp, N = 0. Now it follows

fromLemma5.4,b) that x. 0 for j = 1,...,p and thus x = 0.

Conversely, assume that ker(I-A N ) n ker C : (0 and take
e ker A p. Then Lemma 5.4,b) implies that there exists a vector

X col(xp...XpN) E (N+)n such that [ (-- qN hN ) a I]Xp = 0p, .s~ .. 0x, fN ,..p

and xpN: . If we define x 0 = 0 and xj 0 for j i ...

then it follows for x = col(x 0 ,xl,...,x p) from (5.5) (with z= 0)

that (QN HN)x= 0, Cx = 0. By assumption this implies x = 0 and

thus E = 0. We conclude rank A = n. This finishes the proof of

statement c).

Still let X e a(( qN) h ). Assume that ker A n kerC {0)
an etX t+p (N+i N N T PN 0

an ltN Eo satisfy IXQN (HT) ]x= 0[ 1C Nx = 0. Then
(5.7;2) with j z p and Lemma 5.4,c) imply Apx 0 = 0. This together
with C0x 0 = 0 shows x0 = 0. Hence it follows by repeated use of

(5.7;2) and Lemma 5.4,c) that xJ, 0 = 0, j 1 ,...,p. Finally we

get from Lemma 5.4,b) that x. 0, j = 1,...,p, and thus x = 0,

i.e. ker(AI- (AN)) n ker C NJ (0).

Conversely, suppose that ker(AI- ()*) n ker CN = (0) and let

x e ker A ker C. By Lemma 5.4,b) there exists a vector

a = col(u0,...,SN) N such that
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(X N - (hN)T)a 0 0 and 0

We define x. : col(x , .. x ) E n(N+1) by

XI,k ak(AI- A0)x 0

xjk:- A xxj,k "-kj-ix0

for j = 2,...,p and k = O,...,N. Then it follows from (5.7) that
col(x0~x1 ... x) e ker(IQ N T (HN) )n ker(C N I By assumption this

implies x = 0 and hence x0 = 0, i.e. ker Ap n ker C0 = (0}. Thus

statement e) is proved.

Statements b) and d) follow from e) and c) by duality. The proof

of statement a) is the same as for c) with CN = 0 resp. C0  0o

Remark. Using similar consideration as above we can establish

the following partial generalizations of statement a) in Theorem
r N -1 N N

5.7: a) Suppose X- 4 a((qN)-h N ) for k = 1,...,p. Then X e a(AN )N N
if and only if det A (A) = 0. r

b) Assume A01 (T) E 0. If det A = 0 then A--k e o((qN)-h N ) implies
N 0 p N

We close this section with a very special result that guarantees

stability of (E N) for all N.

Proposition 5.8. Let p = I and assume A0 1 (T) B 0. If

CTA0C < "  2 _ 2 ATC,2 for all nonzero E e1 ]n. then Re A< 0

for every A e a(AN) and every N = 1,2,...

Proof. Let A e a(A N ) for some N and suppose that ReA > 0. Then there

exists a nonzero x e jn(N+2) such that (AQN  H N)x = 0. This implies

(observing the special form of HN)
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0 < (Re x )xTQNx Re( THNx)

(-T T -T 1
Rex 0A0x0 ) Re(-x0AIx ,N Rex 0  o 1,01 -flXl,Ni

< Re(-x Aox) + .1:Ixo2 + -1ATxo 12 < 0

h
if x0  0. This contradiction shows x 0. Therefore I is an

eigenvalue of (qN) h . i.e. Re A < 0 by Lemma 5.4,d). This

contradiction proves the result o

5.3. Convergence of AN (A )

The results of the previous section illustrate the importantN
role which the coefficients ak (U) play for the structural properties

of the approximating systems (EN) and (zN*). So far we have

treated them only as implicit parameters which are given by

equation (5.2). In the following we derive explicit formulas for

the aN(p) and use those in order to prove convergence of AN (A) to
6(A).

kN

Lemma 5.9. a) Let the rational functions dN(u), k 0,...,N, be

defined recursively by

d 0 () = 2u + 3,
N 2dN()=4P + 9 k- Is,... N-1, (5.9)

kd k N(

d N(U) = 2U + 3 + 
9 - P2

iNl(. )

Then aN(y) is given by

N () - k (5.10)
k d N_k(u)" ... d N(I

ro kk
for k = 0,.-.,N.
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b) Let the polynomials pk(u), qk(P) of degree k+1 be defined

recursively by

1, p 2R+ 3

P(p) u+pl() + (9-u (5.11)
q qk (p ) = (2tj+3)Pk_1(P) + (9-1A2 )pk_2(11).

k = 1,20... . Then these polynomials are stable for all k and,

moreover, u e a((q N)- h N ) if and only if qN(P) = 0. If
u 4 o((q N)- h), then

N 6(3-i) kPNk.1(U)ok(.) = (5.12)
qN(U)

for k 09.*..N.

C) Let 0 ±i/-3, u e ;, be given and let w satisfy

w2 = 9 + N

Furthermore put

Y= 2  + w, y, 2 2u - w.

Then e o((qN )-hN) if and only if

(3+w) 2(Yo) N - (3-w) 2(ri) N 0.

If o * ((qN)-h N ) then

aN(u) z 60-0)k (3 w)(yo)N-k 
(3w)(y )N-k

k()2 (3+w 0 O1) (5.13)

for k = 0,...,N.
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NProof. a) Suppose that the functions dk dN(iA), kk k,..N

are given by (5.9) and define

b -3-u 3-ub =2C 3k  1 ,..,N.
k dk-1  k 2 , k

Then it is easy to see that 1

1 -b 0-~0 d 0-0 1 0 -0

It is not difficult to calculate the inverse matrices. Since N )
is the first column of (q N_-hN)-I we conclude that

N 0Nk+l... N  6\(3-)

6L(PJN) K

a () N dN-k" "'N

k = 0,..0,N-

NN
It is nt diffnil~ to( cluate the invre matrices (.1 Sine ohe

ih fi ti d A) by (5-9), then we see by induction that

dN = ck p _(), k =0,...,N-,

and

d N(u) q / g()Nl(U).

This implies

P( " d0N (u)...d N ), k z O,...,N-I,

k
b)i hepn omas(u) an p).. d P) re gieN_ by (51)anNh

N Nu -d(u)....N(u)- 74-
ar74d

Idii ( ) .. -- I...'. .. IIl I . ..... I... ..... II .... . . . . ...-. ..



Hence it follows from Lemma 5.4,d) that qN(P) is a stable

polynomial.

The considerations in the proof of a) together with (5.14) show

that pk(P) is the determinant of the matrix

P- 4 (k+1 )x(k+1)

4u u++3O

P-3 2u+3

Hence it follows from analogous arguments as in the proof of

Lemma 5.4,d) that pk(P) is stable. Finally, equation (5.12) is an

immediate consequence of (5.10) and (5.14).

c) Choose P e 0, A ±i 3, and define w, Y. and -f as in statement

c) of the lemma. Then y0  Y I and

2y - 4uy i - (9_u 2 ) 0, i = 0,1.

Hence 70 and y are the characteristic roots of the difference

equation in (5.11). This implies that

3+w. )k+ 3-w k+i

k 2w , (5.15)

k = -1,0,...,N-1. Using y0 T1 = 2. 9 we get from (5.11) and (5.15)

qN(P) z (2p+3)PN I(;) + (9-P2 )Pn2(u)

= N-n(22+3)(0)N (9 2)(0)N-1

2  2(5.16)

- wl(2 .+3 )(y1 )N + (9- 2 )(1)N1 I

(3+w) N (3-w) N= 2w "YO) " 2w ( 1 "
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This formula shows that u is in the spectrum of (qN)-lhN if and

only if (3+w)2 (Y0 ) - (3-w) 2(y1 ) N O. Moreover, it follows from

(5.12), (5.15) and (5.16) that a k() is given by (5.13) if

p + a((qN ) h N ) and P 0 ±i/5 a

The explicit formulas in the previous lemma allow us to prove

that the matrices AN (X) actually converge to the characteristic

matrix A(M) of the delay system.

Theorem 5.10. Let A0 1 (T) - 0. Then

A(A) = lim AN(X), A E ,
N-aa

the limit being uniform on bounded subsets of 4.

Proof. Fix 6 > 0 and define w(P) by

WU)2 = 9+ 3P , Re w(u) > 0

for any u e 4 with Jli S 6. Then the map p * w(u) is continuous

and w(u) + 3 is non-zero on Jul < 6. From w(u)- 3 3u2  w- " w (U )+3 we see,

that

lw(u)-31 _ lI12 if Il1 .6. (5.17)
N u

In the next step we shall prove that aN(K) converges uniformly

to e- on lP1 < c as N * -. To this end we use formula (5.13)

for k = N and obtain with w = w(R), N > c8-1

N £i_1 (3+w) 2 (3-w) 2(NN) 12w 12w _(518)
N() N ______ -y

N

From (5.17) and lim w(k) 3 uniformly on Jul c we see that
N.
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i 2 M 2
(3 w(.) 1 (3-w(.))lim N and 1lim - -0

N-"- 12w (2) N-- 12w (2)

uniformly on Jul < c. Moreover, we obtain from (5.17) also

w.42 w- 3+ (u)2

3-M N 3-M N N

and

P- 1! -12
w-2 1- 3 -

3 N N

as N * uniformly on Jul c. These relations together with (5.18)

show

iN( I = e

N N N

uniformly on lul.< c. Finally, the theorem follows from equations

(5.3) and (5.4) o

It is our goal to prove that stability (resp. stabilizability

or detectability) of the original system (E) implies the corresponding

property for the approximating system (E ) provided N is sufficiently

large. The first step in this direction is the characterization of

these properties in Theormem 5.6 using the matrices AN M). The

second step is the convergence result for aN(A) in Theorem 5.10.

In addition to these results we need a priori bounds for the unstable

eigenvalues of the matrices [AN 1. This problem will be considered

in the next section.
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5.4. Uniform bounds and nonuniform stability

We first establish uniform bounds for the N(P) in Rex > 0.

Lemma 5.11. The estimate

N

is valid for all u E I with ReV > 0 and all N = 1,2,....

NProof. Since cN(II) is a proper rational function without poles

in Rep > 0 (cf. Lemma 5.9,b), it follows from the maximum principle

for analytic functions that ION(P) achieves its maximum value

in Re P> 0 on the imaginary axis. Therefore we only have to prove

IGN(iw)I _< 2 for all w IlR and all N.

We first consider Uii]R with JIl >/3. In this case we have

id N(P)l _, 13-PI, k = 0,...,N-1, (5.19;1)

and

Id N()l > 3 (5.19;2)

for all N. The first estimate is obviously satisfied for k 0.

Using

21l1 t (9+ IV12)1/2 = 13- I.

we obtain from (5.9) assuming that the estimate is already

established for k
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Im d N (u) L4 Im u - .P2 N(
k+I 9d N W)122

> - 941 N41u - (9+Ii1I2)1/2
Id (u) I

(9+tuI2)1/2 kN-2.

This proves (5.19;1). In order to prove (5.19;2) we note that
N

Re dk () is always positive (and decreasing with respect to k)

since

Re d Ou) Re d (u), k = 0,...,N-2.

N+ _______ k~

Therefore the last equation in (5.9) implies

Re N I2  dN(u

Re dN(u) = 3 + 9 N Re (u) > 3NdN_() dN-1 -

which proves (5.19;2). Now it follows from (5.19) and (5.10) that

toN( 2 "3-Mt 13-u . 3 < 2.
Id0( dN_ 1 0 IdN

It remains to consider P E iR with lul < /3. Let the complex

numbers w, yO, Y1 be defined as in Lemma 5.9,c). Then

w =(9- 31ul 2 1/2

and hence

Ifol = Iral 13-ut. (5.20)

This implies that there exists a p e such that

( N_ e iP  (521)
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Using (5.20) and (5.21) we get from (5.13) that

N 2 = 6 13-0 IN  4w2N=(.I = Y 06 1(3+w)2_ (3-w) 2 (YI/YO) I2

= 144w 2 1(9+w 2 )(1-eip) + 6w(l+e'p)i -2.

The identities

1+e "sin P and I1- eip ,2 2- 2 cos p

1-e = 1-Cos p

imply for any a, b e IR

ip 12la(1-elp ) + b(l+e )2

S2a 2(1 - cos p ) + 2b 2(1 + cos p

There fore

aN(72w
2 (9+w 2 )2 (1-CosP)+36w 2(1+cos p)]-1

36w 2  <1,
(9w2)2 1-cosp + 36w 2 0+cosp--

2 2

because 6w < 9+w 2o

Now we are in the position to prove the desired result on

stabilizability and detectability for the approximating systems
N(z).

Theorem 5.12. Suppose that A0 1 (T) E 0. Then the following statements

are true:
a) If system (r) is stable, then there exists an N0 such that

system ( N ) is stable for every N _> N0.
b) If system (1) is stabilizable (respectively detectable)
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rN

then there exists an N such that system (EN is stabilizabe
(respectively detectable) for every N > No.

Proof. a) Suppose that (E) is stable. Then det &(A) A 0 on

Re X > 0. It follows from Lemma 5.11 and equation (5.3) that

iA 0 + I A (A)hI 2J 1 lAjl
j=1 j ' j:0

for every X e I with Re x> 0. Since N k  0 for j 1,...,p and

AJ,k N
k = 0,...,N, we obtain from (5.4) that det a (A) A 0 for every N

and every A e with ReA > 0 and JAI > w. Finally, the uniform
convergence result on bounded domains (Theroem 5.10) shows that

det aN(A) A 0 for every Xe € with Re A> 0 and JAI < w provided

N is sufficently large. Hence by Theorem 5.6,a) system (EN) is

stable provided N is sufficiently large. This proves a). Statement

b) can be established analogously a

One might now ask the question whether stability Of system (E)

implies stability of the approximating systems (z N) uniformly

with respect to N, i.e. the existence of constants M > 1, > • 0

such that

Ile(A NIt I N Me-t-i i.M , t> 0,

for N sufficiently large (here ii. iiN denotes the operator norm

corresponding to the vector norm IxI = xTNx on]Rn+p(N+l)n

A result of this type would be needed in order to apply a result

of Gibson [211 concerning the approximation of the solution to the

algebraic Riccati equation. Moreover, the uniform stability has

been recently stated as a conjecture [ 8 ] for the spline

approximation scheme developed in 1 7 1. Our result below shows that

such a conjecture is definitely wrong for the approximation scheme

developed in this paper. This also indicates that it is wrong for

the spline approximation scheme in [ 7 1.



Proposition 5.13. Suppose that there exist constants M > 1 and

cN > 0 such that

llexp((N)lhNt)IlN_! Me- Nt, t > 0, (5.22)

for all N. Then

EN = 1 N-

N N

Here 11 ""N denotes the operator norm corresponding to the vector norm

Ix I2  RxTqNx onR .

Proof. First note that

IxTx xTqN T N+I
6 x~q x 4xx,x R

and therefore

xTx < xT(qN)-1x 6xTx, x EJ RN+ I .

This implies for x0  col(1,0,...,O)*and P e :OR (cf. equation (5.2))

GN(N)I 6NIaN(P)I 2 = 6NI(UqN -hN)-lx0j 2

k=0

N If N5 N-1 N t N-i 2
6N 10 e -  exp((gqN) h R)(q) xodtI N

t

6NM21(qN)'xI01N
2 (7 e-eN Ndt)2
N 0

6N3M ,  2 _~ 6)IO N 2 M2 xT,( N,-I

36N
2M2

CN2
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Therefore

C 6NM ( iaN(M)12)-1 (5.23)
N- kiOk

for all P E iE.

Now let 4 E iR satisfy IpI < /3 and define the complex numbers
w, Y0 " Y1 as in Lemma 5.9,c). Then w = /9-13Tu 2 e3R and

IY0 1 = I 1I 13- I. Hence there exists a 6 > 0 such that

Y1 ei

Yo

This together with (5.13) yields

IN () 1 2 _3 (3+w)- (3w)eik
6 12

N(3+w) -(3-w) e

36 9(1-cos k) + w 2(1+cos k6)
(9+w) 2(1-cosN6) + 36w2 (1+cosN6)

for all rE: DR with /-3 < . Since 6 = 6(m) and 6 0 as

Pi i. /3,I <  3, we can choose a sequence UN 6 'i. I1NI < r3
such that PN * i/3 and 6N - N) = 2 . The identity

sin 6 Im 2I m 2+w =w 4 Im1
YO 21j+w w 2+4 )I

shows that for positive constants c1, c2

01 9" N  for all N.

From these facts we get
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N N 2kQNUN 12 _9 Lkj) +I .1 ( 8 os-w)
-7(.,) - (1- cos -N-) + (±+ C'

k=O 2wN kO k-0

-- (N-i)
2 wN

> const. N3

N 2kw
where we have used I cos N < 2. This last estimate

k=0
and (5.23) show that

CN _ const. 1 a

The above result shows that exponential stability uniform

with respect to N is in general impossible for our scheme - at

least if Ap = 0 and A0 1 () B 0. Numerical studies show that there

is a sequence AN' N = 1,2,..., of eigenvalues ANE 0((Nq )-h N )

such that Re AN 0 and Im AN -. In fact, the numerical results

indicate Re AN 0(-g) for this sequence. In the general case where

a((UNq)-hN) is noV part of C([A 1) numerical studies still show
NN

the existence of a sequence AN, N = 1,2,..., such that AN E a((A )

with Re A < 0, Re A 0 and Im A *.
wih NA N N
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6. Numerical results

The spline algorithm developed in Section 4.3 of this paper

was applied to a large number of examples. In this section we

present the numerical findings for some of those examples. The

numerical results confirm the theoretical results in case of the

finite time horizon problem. Despite the fact that we cannot

prove convergence of the scheme for the infinite time horizon

problem using the theory developed in [21] (as pointed out in

Section 5.4) the scheme performs also very well for this class

of problems. This is shown by some examples which already have

been considered in the literature t 8 ].

6.1. Examples with finite final time

Here we present examples where the true solutions of the

control problems are available.

The suboptimal feedback law (4.37), which is governed by the matrices
HtN ).N N (t), is calculated using the algorithm presented

at the end of Section 4.3 (cf. (4.39) - (4.43)). The controls

uN (t) and corresponding trajectories xN(t) where calculated by

integration of

d -N -N -N
aX (t) =L(xt) - Bou (t),

where uN (t) is given by (4.43). This delay system was solved by

a modified Runge-Kutta procedure.

Example 6.1. This is the problem of minimizing

ff2 u(t) 2dt

2 0
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subject to

(t) -x(t-1) + u(t), 0 < t < T 3,

o = 1 (0), * Ct) - 1.

For this example we have n = 1, A0 1  0, p = 1, A 0, A B 1,
01 0, p =1,A 0 0,dR1 B

C 0, G and R The optimal controls, trajectories and

costs were calculated in ( 5 1 using the maximum principle and

are given by
-6 (t-2) 2+3], 0 _< t < 1,

U(t) = 6(t-3) , 1 t 2,

-6, 2 < t < 3,

+t-6-t+.(t2) +.!], 0 < t < 1,

+2-6[4+ (t-3) +(t-1)-4(t-3)] 1 < t < 2,

5(t ) =
-6-- 5t-2 (t-2)+(t-2) 3  (t-4) 3+ 1 (t-4)51,

2 <t < 3,

62

where 6 =185329 "

The numerical results we obtained are presented in Tables 6.1

and 6.2..
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.4t d8 (t) 016(t) U(t)

0 -1.9694 -1.9676 -1.9679 -1.9681

0.25 -1.7049 -1.7049 -1.7043 -1.7045
0.5 -1.4740 -1.4758 -1.4760 -1.4761
0.75 -1.2817 -1.2824 -1.2828 -1.2828
1.0 -1.1267 -1.1252 -1.1250 -1.1246

1.25 -0.9882 -0.9832 -0.9846 -0.9840
1.5 -0.8410 -0.8448 -0.8445 -0.8435
1.75 -0.6922 -0.7002 -0.7050 -0.7029
2.0 -0.5885 -0.5769 -0.5704 -0.5623

2.25 -0.5572 -0.5611 -0.5623
2.5 -0.5620 -0.5623 -0.5623
2.75 -0.5623 -0.5623 -0.5623 1
3.0 -0.5621 -0.5622 -0.5623 -0.5623

J(0) 1.7338 1.7338 1.7338 1.7338

Table 6.1

x t (t) x16(t) t

0.25 0.7914 0.7916 0.7916 0.7917

0.5 0.6448 0.6448 0.6448 0.6448

0.75 0.5511 0.5506 0.5507 0.5507
1.0 0.5007 0.5005 0.5005 0.5005

1.25 0.4589 0.4593 0.4595 0.4595

1.5 0.4083 0.4096 0.4094 0.4094
1.75 0.3655 0.3642 0.3646 0.3646

2.0 0.3375 0.3372 0.3371 0.3370
2.25 0.3159 0.3167 0.3168 0.3168
2.5 0.2845 0.2848 0.2848 0.2849
2.75 0.2403 0.2407 0.2408 0.2408
3.0 0.1874 0.1874 0.1874 0.1874

Table 6.2
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We observe that the error uN(t)-U(t)I is larger around t = I

and t = 2 compared to other points in (0,31 because there U(t)

has jumpsin the derivative whereas uN(t) is continuously

differentiable on (0,31. In Table 6.2 we didn't include the

values for t = 0 because always xN(0) = (0) for our algorithm.

Example 6.2. We have to minimize

J(u) =- 1(2) 2 + x2 (2) 2 ) + 2 + 2
0

subject to

We have n 2, p = 1, A0 1  0, A0  0, A1  (0 0, B0 =1 0,

C0 =0 and G =R= .1 1 . Again the solution of this problem was

obtained in [5 1 and is given by

V , + 6(1-t), 0 < t < 1,

VS 1 < t < 2,

S: 6 26 _

I + Ut - i(t-1) + 6, 0 < t < 1,
(t 2 t<

1+Ut 2,

I + (1+6)t, 0 < t < 1,S: (1+)t-1) + 2 (t-2)3 + 5 , 1 < t 2,

2 2 36 6

and

j(U) .2,.22 +  .1,6 + . 22S
2 1 5
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I

0 -1.0608 -1.0601 -1.0603 -1.0598

0.25 -0.8495 -0.8407 -0.8428 -0.8419

0.5 -0.6197 -0.6260 -0.6256 -0.6239

0.75 -0.38901 -0.4018 -0.4092 -0.4060

1.0 -0.22841 -0.2107 -0.2007 -0.1880

1.25 -0.1799 -0.1861 -0.1881

1.5 -0.1873 -0.1880 -0.188o

1.75 -0.1879 -0.1880 -0.1880

2.0 -0-1878 -o.1880 -o.188o -0.1880
a4 8 (t) a1ut) U(t

2 2

0 -0.8713 -0.8717 -0.8718 -0.8718

0.25 -0.8713 -0.8717

0.5 -0.8712 -0.8717
0.75 -0.8715 -0.8718

1.0 -0.8718
1.25 -0.8718

1.5 -0.8719
1.75 -0.8718
2.0 -0.8718 -0.8718 -0.8718 -0.8718

J(u) -1.4018 1.4017 1.4017 1.4017

Table 6.3
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i4 (t i (t 1 (t) 3F (t)
X1 x1 (t) x() Ct x6t

0.25 0.76100 0.76192 0.76229 0.76229

0.5 0.57691 0.57927 0.57908 0.57906

0.75 0.45142 0.44963 0.45038 0.45032

1.0 0.37648 0.37640 0.37621 0.37607

1.25 0.32751 0.32893 0.32905 0.32906

1.5 0.28184 0.28198 0.28204 0.28504

1.75 0.23474 0.23498 0.23503 0.23504

2.0 0.18781 0.18799 0.18803 0.18803

Sx 2 (t) i 8 (t) x16(t) x2 (t)

0.25 1.03216 1.03207 1.03205 1.03205

0.5 1.06433 1.06414 1.06411 1.06410

0.75 1.09647 1.09619 1.09616 1.09615

1.0 1.12855 1.12823 1.12820 1.12821

1.25 1.12961 1.12939 1.12940 1.12941

j.5 1.07768 1.07797 1 1.07799 1.07799

1.75 0.98704 0.98747 0.98757 0.9875812.0 o.877 0 . ~ , o
12. 1.8775 0.87177 0.87179 J0.87180

Table 6.4
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6.2. Examples for the infinite time horizon problem

Despite the fact we cannot prove convergence of our scheme

for the infinite time horizon following the ideas of Gibson 121]

the algorithm seems to behave very well also in this case. The

following examples show that it should be possible to prove

convergence of the operators nN to R in the uniform operator

topology. Here RN restricted to XN (on (X N) we have N 0) is the

solution of the algebraic Riccati equation

(AN )*nN + NAN -N NBR- B*nN + C*C = 0 (6.1)

and II is the solution of (3.21). Taking matrix repesentations

for the operators equation (6.1) takes the following form

(cf. also (4.38)):

[(AN )*In N  + [IN ][A] - D N]1B N]R [BN I TIN I

+ [CN I T[C] = 0.

Analogously as in case of equation (4.38) we define

rN QN[nN]

and get the Riccati matrix equation

[ANITrN + r N[A (6.2)

- rN [BN ]R1-I[BN]TrN + [cNIT[C N I = 0.

Using H instead of H in the feedback law (3.24) we get by

analogous computations as in (4.44)

uN (t) -R-B 0 {R0  (t)+ f n1 (y)ic(t+T)dT),t 0, (6.3)
-h
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where 1 NN )Te()1 :lj ( kj ( ) andk=1 j=0

II

[IN ] = 10

pN

(compare (4.42) and (4.43)). The numerical results clearly show

In Np- N n - 0 as N --. Thus there should be a way to prove this

convergence without having uniform exponential stability for the

approximating problem.

For the examples (6.2) was solved using the Newton-Kleinman-

algorithm as presented in [34], for instance. The Ljapunov matrix

equation which has to be solved in eazh step of the Newton-Kleinman-

algorithm was solved using the quadratically convergent procedure

given by R.A. Smith [39] (see also [34], p. 297). The

approximating controls uN(t)and corresponding trajectories kN(t)
where calculated as for the examples in Section 6.1. The following

examples were already considered in [ 8 1 where the approximation

was done using the spline scheme developed in [7 1.

Example 6.3. This is Example 4.1 in [8 ] and considers the

minimization of

J(u) = 7 (x(t) 2 + u(t) 2dt0

subject to

i(t) = x(t) + x(t-1) + u(t), t > 0,

€0 O, 1 (t) = sin wt, -1 < t < 0.
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In this case we have n = p = 1, A0  A1 B0 
= C " R-. In

Table 6.5 we give the values for J(u ) and the optimal costs
jN = NN (01 4),pN (0,#)1 for the approximating systems (EN)

with cost functional (4.33).

N j( N) N

4 0.321439 0.321430

8 0.321439 0.321432

16 0.321439 0.321430

Table 6.5

and N
In Table 6.6 we show the values for R0a SinceT 0

range H c dom A* (cf. Proposition 3.4,b)), we have AT1001 =

(110 0)(-1) for all 0 ER n. Therefore we should have

KlN _ 11N as N- .
0 N

N no itN
0 IN

4 2.80886 2.77538

8 2.809328 2.80096

16 2.809390 2.80729

32 2.809396 2.80887

Table 6.6

In Table 6.7 we give the valuesfor fl1 (T), which governs the

distributed feedback in (6.3), at the knots - j O,...,N, for
N N

N 4, 8, 16 and 32. We clearly see that n I(T) converges uniformly

on -1 < t 0 0 as N *
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4 Ul..J~r 16(L) -3
2 (L

1_____ 1 32 321~ 32

0 0.63598 0.63683 0.63694 0.63696
1 - - - 0.66132
2 - - 0.68698 0.68764
3 - - - 0.71558
4 - 0.74240 0.74512 0.74553
5 - - - 0.77722
6 - - 0.81040 o.81114
T - - - 0.84695
8 0.87064 0.88269 0.88474 0.88517
9 - - - 0.92547

10 - - 0.96750 0.96839
11 - - - 1.01361
12 - 1.05757 1.06113 1.06165
13 - - - 1.11225
14 - - 1.16491 1.16591
15 - - - 1.22238
16 1.26664 1.27879 1.281-51 1.28218
17 - - - 1.34508
18 - - 1.41o48 1.41162
19 - - - 1.48157
20 - 1.54972 1.55463 1.55547
21 - - - 1.63314
22 - - 1.71381 1.71512
23 - - - 1.80125
214 1.86588 1.88693 1.89104 1.89209
25 - - - 1.98748
26 - - 2.08649 2.08802
27 - - - 2.19358
28 - 2.29692 2.30348 2.30477
29 - - - 2.42147
30 - - 2.54253 2.54432
31 - - - 2.67323
32 2.77538 2.80096 2.80729 2.80887

Table 6.7
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With respect to 11N the behavior of the scheme presented in [ 8 )
0

is comparable to the performance of our scheme. But with respect

to approximation of the feedback kernel our scheme behaves

much better (compare Figures 4.1 - 4.4 in [ 8 )). Our scheme

seems also to be more accurate as far as approximation of

J() by JN(uN) and J is concerned. In Tables 6.8 and 6.9 we

present the values for uN(t) and xN(t) on 0 < t < 4 and 0 c t < 3,
-N -N-

respectively, where u (t) is given by (6.3) and x (t) solves
d iN~ iN -N N 0 1

ct) L( + Bo0u(t), O),io )

u (t) 8 (t) 16 (t)

0 0.86836 0.86817 0.86816

0.25 0.64894 0.64891 0.64891

0.5 0.49650 0.49657 0.49658

0.75 0.35400 0.36400 0.36401

1.0 0.24627 0.24618 0.24618

1.25 0.16154 0.16146 0.16146

1.5 0.10999 0.10993 0.10993

1.75 0.08024 0.08021 0.08021

2.0 0.06015 0.06015 0.06015

2.25 0.04348 0.04347 0.04347

2.5 0.02983 0.02982 0.02982

2.75 0.01996 0.01995 0.01995

3.0 0.01373 0.01372 0.01372

3.25 0.00991 0.00991 0.00991

3.5 0.00729 0.00729 0.00729

3.75 0.00524 0.00523 0.00523

4.0 0.00362 0.00362 0.00362

Table 6.8
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N 4 .8 i6
x~t) x~t) x (t)

0.25 0.11259 0.11258 0.11258

0.5 0.05332 0.05331 0.05332

0.75 -0.06628 -0.06626 -0.06626

1.0 -0.10850 -0.10846 -0.10846

1.25 -0.0616o -0.06158 -0.06158

1.5 -0.01397 -0.01397 -0.01397

1.75 0.00753 0.00752 0.00752

2.0 0.00178 0.00178 0.00178

2.25 -0.00784 -0.00784 -0.00784

2.5 -0.01030 -0.01029 -0.01029

2.75 I'-0.00646 -0.00646i -0.00646
3.0 1-0.00178 1-0.001781 -0.00178_J

Table 6.9

Example 6.4. This is a model for the Mach number control loop
for the National Transonic Facility at NASA's Langley Reserach

Center. For details see [ 2 1 or 1 8 ). The problem is to

minimize

J(u) f(X (t)CCT Cx(t) + u 2(t)Idt
000

subject to

a- 0 0 [ + 0 ka 0o
i(t) = o 0 0 01 x(t-0.33)- 2 W-0 0 00

(6.4)

0 2 u(t)j, t >_ 0,

010 2 col(-0.1,8.547,o) a (t), -0.33 i t 0.
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We have C =1(100,0,0), n = 3, p = I, k = -0.0117, C = 0.8,
6.0 and -= 1.964. Because of the simple structure of this

a
problem it is possible to calculate the true solution following

an idea contained in [29]. If we put for t > 0

y1 (t) Z x (t+h), h = 0.33,

y2 (t) M x2(t),

y3(t) Z x3(t),

we obtain by a simple calculation

(y1(t )1 (a ka 0 1 I' (t), 0 ~

A..] Y2(t )I 0 0 2 1 y2'(t) + 0 u(t). (6.5)
dt y(t )J 0 _"2 2 4,J Jy 2(t

The cost functional takes the form

J(U) = 10 4 x x(t) 2dt + j [10 4 y 1 (t) 2 +u(t)2 ]dt' (6.6)
0 0

where

-atO t
x (t) = e-at 0 + ak f e-a(t-T),(T-h)dT, (6.7)

I1 0 2

0 < t < h,

is not dependent on u(t) on the interval [0,1]. Therefore

minimizing J(u) subject to (6.4) is equivalent to minimizing

i(u) a 7 y1 (t)2 + u(t)2 Idt
0

subject to (6.5) with initial data

y1(0) = xI(h), y2(0) = x2(0), Y3(0) 2 x3 (0). (6.8)
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The solution of the latter problem is given by the feedback law

-(t)6 2-u(t) =.(0,0,W2)fio0(t),

where Y(t) is the solution of (6.5) with u(t) = 6(t) and initial

data (6.8). i0 is the solution of the algebraic Riccati equation

iTo + f0 0i BBt + T 0, (6.9)

where

_-a ak21 0

Equation (6.9) was solved numerically to give

[8220.51099 -ii.6o86 -1.12107'

0 -11.61086 .o1851 0.00186i
,-1.12107 0.00186 0.00019

The optimal costs for the original problem are given by
h

J(M) = 6(1) + 10 4 f jl(t)2 dt
0 h(6.10)

SY T(0)f0lJ(0) 10 4 f 3Fl(t)2dt.
0

Using (6.7) it is easy to calculate J(1). In Table 610 we give
the values for J(U), j(aN ) and jN = <nNpN(40,41),pN(# 0,1))"

N J(u ) j

4 136.39587 136.40499

8 136.o4009 136.40509

16 136.40250 136.40521

J(U) 136.40490

Table 6.10
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Using (6.10), (6.8) and (6.7) we get oy some calculations
for general initial data (00, s)

0 j- a h  0 0 - -2ah r' 0 i1}
J 1 0 1 0 f 10- 0 €0

0 0 1 2a 0

+ 2e - a h 0 fi 10 00 0 eat,1 (r)d
0 0 j1 0 0 0 -h

1 0 4 ke-ah (,0)T0 1 1 0 (e-aeaT+o0 k j( )#'(,)d-

00o 0 -h

a22 ea1 (1(0 o 0 10 ea t(t)d'

-h 0 0 O) 0 Oj -h

+ 10 a2 k2 < 2(a), . ea(-)_h ea(-a)f()dodT> 2
-h L

On the other hand we have

J((!) 0 $) T 1100$ 0 + 2(#0 )T 11014 1+ <41 it 114 1>L 2 •

Comparison immediately gives

-ah 0 0 e 0 0 + I • - 2 ah 1 0 01
100 0 1 0 0 1 +10 0 0 0

o 0 1J0 0 1) 0 0 J

I fe-0 ofio~ 1 01 0
11 0o ak 0 . 0 0 0o - * (T)dT

o0 0 J1 0 0 0 j -h

+ 104ke ah 1 1 0 - a ear $(T)dr

0 0 0h

or equivalently, (H* 0O)(e) zn 1 (e)0O with
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0 1foea(o+o0 -aG ae
R (0) =ak 1+ l a ] e -

10 01 -a 0 1  + keah 10 e -

1~ ~ 2 0a[ 0 0io

-h _ 6 _ 0. Furthermore, we get after some calculation

1~[ 2 2} ae 0 j o1-0 #114* (e a k e 1 0 0 ~0 0 0 Of ea ()d-r
~0 0 0J 0 0 0 -h

+ ak2 e2 (T)dT, -h < <0.
0 2J-h

In Table 6.11 we present the values for N and n00
an H00 adi

Table 6.12 we show the values for the second row of
N (J4) and .h 12 ., 4. The other rows of these"1 nl1(-j] ) for j =0,.

matrices are always zero.

N fN

0

867.02417 -9.81502 -o.94768'
W -9.81502 0.01851 0.00186

1-0.94768 0.00186 0.00019

8677.02698 -9.81505 -0.94768'
8 -9.81505 0.01851 0.00186

-0.94768 0.00186 0.00019

8677.03516 -9.81506 -0.94768'

16 -9.81506 0.01851 0.00186
L -0.94768 0.0018 0.00019

I8677.02405 -9.81505 -0.947681
a 00 -9.815 0.01851 0.00186

1-0.94768 0.00186 0.00019 J

Table 6.11
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jn1 -4 )

0 -41.39697 0.06916 0.00668

1 -43.83789 0.06652 0.00640

2 -46.37943 0.06334 0.00613
3 -48.97898 0.06118 0.00590

4 -51.69006 0.05828 0.00563

i_ 
8 h

0 -41.39721 0.06917 0.00668

1 -43.84998 0.06626 0.00640

2 -46.38019 0.06355 0.00614

3 -48.99226 0.06093 0.00588

4 -51.69080 0.05843 0.00564

0 -41.39727 0.06917 0.00668

1 -43.85012 0.06631 0.00640
2 -46.38036 0.06358 0.00614

3 -48.99246 0.06097 0.00589
4 -51.69102 0.05846 0.00564

jh

0 -41.39721 0.06917 0.00668

1 -43.85008 0.06632 0.00641
2 -46.38034 0.06360 0.00614

3 -48.99246 0.06098 0.00589 i

4 -51.69103 0.05847 0.00565

Table 6.12
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